Description: A subspace covered by an atom must be the zero subspace. ( atcveq0 analog.) (Contributed by NM, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsatcveq0.o | |
|
lsatcveq0.s | |
||
lsatcveq0.a | |
||
lsatcveq0.c | |
||
lsatcveq0.w | |
||
lsatcveq0.u | |
||
lsatcveq0.q | |
||
Assertion | lsatcveq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcveq0.o | |
|
2 | lsatcveq0.s | |
|
3 | lsatcveq0.a | |
|
4 | lsatcveq0.c | |
|
5 | lsatcveq0.w | |
|
6 | lsatcveq0.u | |
|
7 | lsatcveq0.q | |
|
8 | 5 | adantr | |
9 | 6 | adantr | |
10 | lveclmod | |
|
11 | 5 10 | syl | |
12 | 2 3 11 7 | lsatlssel | |
13 | 12 | adantr | |
14 | simpr | |
|
15 | 2 4 8 9 13 14 | lcvpss | |
16 | 15 | ex | |
17 | 1 3 4 5 7 | lsatcv0 | |
18 | 5 | 3ad2ant1 | |
19 | 1 2 | lsssn0 | |
20 | 11 19 | syl | |
21 | 20 | 3ad2ant1 | |
22 | 12 | 3ad2ant1 | |
23 | 6 | 3ad2ant1 | |
24 | simp2 | |
|
25 | 1 2 | lss0ss | |
26 | 11 6 25 | syl2anc | |
27 | 26 | 3ad2ant1 | |
28 | simp3 | |
|
29 | 2 4 18 21 22 23 24 27 28 | lcvnbtwn3 | |
30 | 29 | 3exp | |
31 | 17 30 | mpd | |
32 | 16 31 | syld | |
33 | breq1 | |
|
34 | 17 33 | syl5ibrcom | |
35 | 32 34 | impbid | |