Step |
Hyp |
Ref |
Expression |
1 |
|
lsat0cv.o |
|
2 |
|
lsat0cv.s |
|
3 |
|
lsat0cv.a |
|
4 |
|
lsat0cv.c |
|
5 |
|
lsat0cv.w |
|
6 |
|
lsat0cv.u |
|
7 |
5
|
adantr |
|
8 |
|
simpr |
|
9 |
1 3 4 7 8
|
lsatcv0 |
|
10 |
|
lveclmod |
|
11 |
5 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
1 2
|
lsssn0 |
|
14 |
11 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
6
|
adantr |
|
17 |
|
simpr |
|
18 |
2 4 12 15 16 17
|
lcvpss |
|
19 |
|
pssnel |
|
20 |
18 19
|
syl |
|
21 |
6
|
ad2antrr |
|
22 |
|
simprl |
|
23 |
|
eqid |
|
24 |
23 2
|
lssel |
|
25 |
21 22 24
|
syl2anc |
|
26 |
|
velsn |
|
27 |
26
|
biimpri |
|
28 |
27
|
necon3bi |
|
29 |
28
|
adantl |
|
30 |
29
|
adantl |
|
31 |
|
eldifsn |
|
32 |
25 30 31
|
sylanbrc |
|
33 |
32 22
|
jca |
|
34 |
33
|
ex |
|
35 |
34
|
eximdv |
|
36 |
|
df-rex |
|
37 |
35 36
|
syl6ibr |
|
38 |
20 37
|
mpd |
|
39 |
|
simpllr |
|
40 |
2 4 5 14 6
|
lcvbr2 |
|
41 |
40
|
adantr |
|
42 |
41
|
ad2antrr |
|
43 |
11
|
ad2antrr |
|
44 |
43
|
ad2antrr |
|
45 |
|
eldifi |
|
46 |
45
|
adantl |
|
47 |
46
|
ad2antrr |
|
48 |
|
eqid |
|
49 |
23 2 48
|
lspsncl |
|
50 |
44 47 49
|
syl2anc |
|
51 |
1 2
|
lss0ss |
|
52 |
44 50 51
|
syl2anc |
|
53 |
|
eldifsni |
|
54 |
53
|
adantl |
|
55 |
54
|
ad2antrr |
|
56 |
23 1 48
|
lspsneq0 |
|
57 |
44 47 56
|
syl2anc |
|
58 |
57
|
necon3bid |
|
59 |
55 58
|
mpbird |
|
60 |
59
|
necomd |
|
61 |
|
df-pss |
|
62 |
52 60 61
|
sylanbrc |
|
63 |
6
|
ad2antrr |
|
64 |
63
|
ad2antrr |
|
65 |
|
simplr |
|
66 |
2 48 44 64 65
|
lspsnel5a |
|
67 |
62 66
|
jca |
|
68 |
|
psseq2 |
|
69 |
|
sseq1 |
|
70 |
68 69
|
anbi12d |
|
71 |
|
eqeq1 |
|
72 |
70 71
|
imbi12d |
|
73 |
72
|
rspcv |
|
74 |
50 73
|
syl |
|
75 |
67 74
|
mpid |
|
76 |
75
|
expimpd |
|
77 |
42 76
|
sylbid |
|
78 |
39 77
|
mpd |
|
79 |
78
|
eqcomd |
|
80 |
79
|
ex |
|
81 |
80
|
reximdva |
|
82 |
38 81
|
mpd |
|
83 |
5
|
adantr |
|
84 |
23 48 1 3
|
islsat |
|
85 |
83 84
|
syl |
|
86 |
82 85
|
mpbird |
|
87 |
9 86
|
impbida |
|