Metamath Proof Explorer


Theorem lsat0cv

Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lsat0cv.o 0 ˙ = 0 W
lsat0cv.s S = LSubSp W
lsat0cv.a A = LSAtoms W
lsat0cv.c C = L W
lsat0cv.w φ W LVec
lsat0cv.u φ U S
Assertion lsat0cv φ U A 0 ˙ C U

Proof

Step Hyp Ref Expression
1 lsat0cv.o 0 ˙ = 0 W
2 lsat0cv.s S = LSubSp W
3 lsat0cv.a A = LSAtoms W
4 lsat0cv.c C = L W
5 lsat0cv.w φ W LVec
6 lsat0cv.u φ U S
7 5 adantr φ U A W LVec
8 simpr φ U A U A
9 1 3 4 7 8 lsatcv0 φ U A 0 ˙ C U
10 lveclmod W LVec W LMod
11 5 10 syl φ W LMod
12 11 adantr φ 0 ˙ C U W LMod
13 1 2 lsssn0 W LMod 0 ˙ S
14 11 13 syl φ 0 ˙ S
15 14 adantr φ 0 ˙ C U 0 ˙ S
16 6 adantr φ 0 ˙ C U U S
17 simpr φ 0 ˙ C U 0 ˙ C U
18 2 4 12 15 16 17 lcvpss φ 0 ˙ C U 0 ˙ U
19 pssnel 0 ˙ U x x U ¬ x 0 ˙
20 18 19 syl φ 0 ˙ C U x x U ¬ x 0 ˙
21 6 ad2antrr φ 0 ˙ C U x U ¬ x 0 ˙ U S
22 simprl φ 0 ˙ C U x U ¬ x 0 ˙ x U
23 eqid Base W = Base W
24 23 2 lssel U S x U x Base W
25 21 22 24 syl2anc φ 0 ˙ C U x U ¬ x 0 ˙ x Base W
26 velsn x 0 ˙ x = 0 ˙
27 26 biimpri x = 0 ˙ x 0 ˙
28 27 necon3bi ¬ x 0 ˙ x 0 ˙
29 28 adantl x U ¬ x 0 ˙ x 0 ˙
30 29 adantl φ 0 ˙ C U x U ¬ x 0 ˙ x 0 ˙
31 eldifsn x Base W 0 ˙ x Base W x 0 ˙
32 25 30 31 sylanbrc φ 0 ˙ C U x U ¬ x 0 ˙ x Base W 0 ˙
33 32 22 jca φ 0 ˙ C U x U ¬ x 0 ˙ x Base W 0 ˙ x U
34 33 ex φ 0 ˙ C U x U ¬ x 0 ˙ x Base W 0 ˙ x U
35 34 eximdv φ 0 ˙ C U x x U ¬ x 0 ˙ x x Base W 0 ˙ x U
36 df-rex x Base W 0 ˙ x U x x Base W 0 ˙ x U
37 35 36 syl6ibr φ 0 ˙ C U x x U ¬ x 0 ˙ x Base W 0 ˙ x U
38 20 37 mpd φ 0 ˙ C U x Base W 0 ˙ x U
39 simpllr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ C U
40 2 4 5 14 6 lcvbr2 φ 0 ˙ C U 0 ˙ U s S 0 ˙ s s U s = U
41 40 adantr φ 0 ˙ C U 0 ˙ C U 0 ˙ U s S 0 ˙ s s U s = U
42 41 ad2antrr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ C U 0 ˙ U s S 0 ˙ s s U s = U
43 11 ad2antrr φ 0 ˙ C U x Base W 0 ˙ W LMod
44 43 ad2antrr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U W LMod
45 eldifi x Base W 0 ˙ x Base W
46 45 adantl φ 0 ˙ C U x Base W 0 ˙ x Base W
47 46 ad2antrr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U x Base W
48 eqid LSpan W = LSpan W
49 23 2 48 lspsncl W LMod x Base W LSpan W x S
50 44 47 49 syl2anc φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U LSpan W x S
51 1 2 lss0ss W LMod LSpan W x S 0 ˙ LSpan W x
52 44 50 51 syl2anc φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U 0 ˙ LSpan W x
53 eldifsni x Base W 0 ˙ x 0 ˙
54 53 adantl φ 0 ˙ C U x Base W 0 ˙ x 0 ˙
55 54 ad2antrr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U x 0 ˙
56 23 1 48 lspsneq0 W LMod x Base W LSpan W x = 0 ˙ x = 0 ˙
57 44 47 56 syl2anc φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U LSpan W x = 0 ˙ x = 0 ˙
58 57 necon3bid φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U LSpan W x 0 ˙ x 0 ˙
59 55 58 mpbird φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U LSpan W x 0 ˙
60 59 necomd φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U 0 ˙ LSpan W x
61 df-pss 0 ˙ LSpan W x 0 ˙ LSpan W x 0 ˙ LSpan W x
62 52 60 61 sylanbrc φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U 0 ˙ LSpan W x
63 6 ad2antrr φ 0 ˙ C U x Base W 0 ˙ U S
64 63 ad2antrr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U U S
65 simplr φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U x U
66 2 48 44 64 65 lspsnel5a φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U LSpan W x U
67 62 66 jca φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U 0 ˙ LSpan W x LSpan W x U
68 psseq2 s = LSpan W x 0 ˙ s 0 ˙ LSpan W x
69 sseq1 s = LSpan W x s U LSpan W x U
70 68 69 anbi12d s = LSpan W x 0 ˙ s s U 0 ˙ LSpan W x LSpan W x U
71 eqeq1 s = LSpan W x s = U LSpan W x = U
72 70 71 imbi12d s = LSpan W x 0 ˙ s s U s = U 0 ˙ LSpan W x LSpan W x U LSpan W x = U
73 72 rspcv LSpan W x S s S 0 ˙ s s U s = U 0 ˙ LSpan W x LSpan W x U LSpan W x = U
74 50 73 syl φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U s S 0 ˙ s s U s = U 0 ˙ LSpan W x LSpan W x U LSpan W x = U
75 67 74 mpid φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U s S 0 ˙ s s U s = U LSpan W x = U
76 75 expimpd φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ U s S 0 ˙ s s U s = U LSpan W x = U
77 42 76 sylbid φ 0 ˙ C U x Base W 0 ˙ x U 0 ˙ C U LSpan W x = U
78 39 77 mpd φ 0 ˙ C U x Base W 0 ˙ x U LSpan W x = U
79 78 eqcomd φ 0 ˙ C U x Base W 0 ˙ x U U = LSpan W x
80 79 ex φ 0 ˙ C U x Base W 0 ˙ x U U = LSpan W x
81 80 reximdva φ 0 ˙ C U x Base W 0 ˙ x U x Base W 0 ˙ U = LSpan W x
82 38 81 mpd φ 0 ˙ C U x Base W 0 ˙ U = LSpan W x
83 5 adantr φ 0 ˙ C U W LVec
84 23 48 1 3 islsat W LVec U A x Base W 0 ˙ U = LSpan W x
85 83 84 syl φ 0 ˙ C U U A x Base W 0 ˙ U = LSpan W x
86 82 85 mpbird φ 0 ˙ C U U A
87 9 86 impbida φ U A 0 ˙ C U