Step |
Hyp |
Ref |
Expression |
1 |
|
lsat0cv.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsat0cv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lsat0cv.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lsat0cv.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
5 |
|
lsat0cv.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lsat0cv.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → 𝑊 ∈ LVec ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ 𝐴 ) |
9 |
1 3 4 7 8
|
lsatcv0 |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → { 0 } 𝐶 𝑈 ) |
10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑊 ∈ LMod ) |
13 |
1 2
|
lsssn0 |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → { 0 } ∈ 𝑆 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } ∈ 𝑆 ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑈 ∈ 𝑆 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } 𝐶 𝑈 ) |
18 |
2 4 12 15 16 17
|
lcvpss |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } ⊊ 𝑈 ) |
19 |
|
pssnel |
⊢ ( { 0 } ⊊ 𝑈 → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
21 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
24 |
23 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
25 |
21 22 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
26 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
27 |
26
|
biimpri |
⊢ ( 𝑥 = 0 → 𝑥 ∈ { 0 } ) |
28 |
27
|
necon3bi |
⊢ ( ¬ 𝑥 ∈ { 0 } → 𝑥 ≠ 0 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → 𝑥 ≠ 0 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ≠ 0 ) |
31 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ≠ 0 ) ) |
32 |
25 30 31
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) |
33 |
32 22
|
jca |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) ) |
35 |
34
|
eximdv |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ∃ 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) ) |
36 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ↔ ∃ 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) |
37 |
35 36
|
syl6ibr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ) ) |
38 |
20 37
|
mpd |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → { 0 } 𝐶 𝑈 ) |
40 |
2 4 5 14 6
|
lcvbr2 |
⊢ ( 𝜑 → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
43 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑊 ∈ LMod ) |
45 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
48 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
49 |
23 2 48
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) |
50 |
44 47 49
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) |
51 |
1 2
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) → { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
52 |
44 50 51
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
53 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑥 ≠ 0 ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ≠ 0 ) |
56 |
23 1 48
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = { 0 } ↔ 𝑥 = 0 ) ) |
57 |
44 47 56
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = { 0 } ↔ 𝑥 = 0 ) ) |
58 |
57
|
necon3bid |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ≠ { 0 } ↔ 𝑥 ≠ 0 ) ) |
59 |
55 58
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
60 |
59
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ≠ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
61 |
|
df-pss |
⊢ ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ↔ ( { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ { 0 } ≠ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
62 |
52 60 61
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
63 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
65 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
66 |
2 48 44 64 65
|
lspsnel5a |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) |
67 |
62 66
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
68 |
|
psseq2 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( { 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
69 |
|
sseq1 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑠 ⊆ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
70 |
68 69
|
anbi12d |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ↔ ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) ) |
71 |
|
eqeq1 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑠 = 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
72 |
70 71
|
imbi12d |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ↔ ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
73 |
72
|
rspcv |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
74 |
50 73
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
75 |
67 74
|
mpid |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
76 |
75
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
77 |
42 76
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( { 0 } 𝐶 𝑈 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
78 |
39 77
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) |
79 |
78
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
80 |
79
|
ex |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑈 → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
81 |
80
|
reximdva |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
82 |
38 81
|
mpd |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
83 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑊 ∈ LVec ) |
84 |
23 48 1 3
|
islsat |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
86 |
82 85
|
mpbird |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑈 ∈ 𝐴 ) |
87 |
9 86
|
impbida |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ↔ { 0 } 𝐶 𝑈 ) ) |