| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsat0cv.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsat0cv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsat0cv.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 4 |
|
lsat0cv.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 5 |
|
lsat0cv.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lsat0cv.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → 𝑊 ∈ LVec ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ 𝐴 ) |
| 9 |
1 3 4 7 8
|
lsatcv0 |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐴 ) → { 0 } 𝐶 𝑈 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑊 ∈ LMod ) |
| 13 |
1 2
|
lsssn0 |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → { 0 } ∈ 𝑆 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } ∈ 𝑆 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } 𝐶 𝑈 ) |
| 18 |
2 4 12 15 16 17
|
lcvpss |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → { 0 } ⊊ 𝑈 ) |
| 19 |
|
pssnel |
⊢ ( { 0 } ⊊ 𝑈 → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
| 21 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 24 |
23 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 25 |
21 22 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 27 |
26
|
biimpri |
⊢ ( 𝑥 = 0 → 𝑥 ∈ { 0 } ) |
| 28 |
27
|
necon3bi |
⊢ ( ¬ 𝑥 ∈ { 0 } → 𝑥 ≠ 0 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → 𝑥 ≠ 0 ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 31 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ≠ 0 ) ) |
| 32 |
25 30 31
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) |
| 33 |
32 22
|
jca |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) ) → ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) |
| 34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) ) |
| 35 |
34
|
eximdv |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ∃ 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) ) |
| 36 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ↔ ∃ 𝑥 ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑥 ∈ 𝑈 ) ) |
| 37 |
35 36
|
imbitrrdi |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ { 0 } ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ) ) |
| 38 |
20 37
|
mpd |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → { 0 } 𝐶 𝑈 ) |
| 40 |
2 4 5 14 6
|
lcvbr2 |
⊢ ( 𝜑 → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( { 0 } 𝐶 𝑈 ↔ ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) ) ) |
| 43 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑊 ∈ LMod ) |
| 45 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 48 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 49 |
23 2 48
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) |
| 50 |
44 47 49
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) |
| 51 |
1 2
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 ) → { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 52 |
44 50 51
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 53 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑥 ≠ 0 ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ≠ 0 ) |
| 56 |
23 1 48
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = { 0 } ↔ 𝑥 = 0 ) ) |
| 57 |
44 47 56
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = { 0 } ↔ 𝑥 = 0 ) ) |
| 58 |
57
|
necon3bid |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ≠ { 0 } ↔ 𝑥 ≠ 0 ) ) |
| 59 |
55 58
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
| 60 |
59
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ≠ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 61 |
|
df-pss |
⊢ ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ↔ ( { 0 } ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ { 0 } ≠ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 62 |
52 60 61
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 63 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 65 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
| 66 |
2 48 44 64 65
|
ellspsn5 |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) |
| 67 |
62 66
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
| 68 |
|
psseq2 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( { 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 69 |
|
sseq1 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑠 ⊆ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
| 70 |
68 69
|
anbi12d |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ↔ ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) ) |
| 71 |
|
eqeq1 |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( 𝑠 = 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
| 72 |
70 71
|
imbi12d |
⊢ ( 𝑠 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → ( ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ↔ ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
| 73 |
72
|
rspcv |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∈ 𝑆 → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
| 74 |
50 73
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( { 0 } ⊊ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) ) |
| 75 |
67 74
|
mpid |
⊢ ( ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) ∧ { 0 } ⊊ 𝑈 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
| 76 |
75
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( { 0 } ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( { 0 } ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → 𝑠 = 𝑈 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
| 77 |
42 76
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( { 0 } 𝐶 𝑈 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) ) |
| 78 |
39 77
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) = 𝑈 ) |
| 79 |
78
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 80 |
79
|
ex |
⊢ ( ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑈 → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 81 |
80
|
reximdva |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑥 ∈ 𝑈 → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 82 |
38 81
|
mpd |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
| 83 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑊 ∈ LVec ) |
| 84 |
23 48 1 3
|
islsat |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
| 86 |
82 85
|
mpbird |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 87 |
9 86
|
impbida |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ↔ { 0 } 𝐶 𝑈 ) ) |