Metamath Proof Explorer


Theorem lcvpss

Description: The covers relation implies proper subset. ( cvpss analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvfbr.c 𝐶 = ( ⋖L𝑊 )
lcvfbr.w ( 𝜑𝑊𝑋 )
lcvfbr.t ( 𝜑𝑇𝑆 )
lcvfbr.u ( 𝜑𝑈𝑆 )
lcvpss.d ( 𝜑𝑇 𝐶 𝑈 )
Assertion lcvpss ( 𝜑𝑇𝑈 )

Proof

Step Hyp Ref Expression
1 lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvfbr.c 𝐶 = ( ⋖L𝑊 )
3 lcvfbr.w ( 𝜑𝑊𝑋 )
4 lcvfbr.t ( 𝜑𝑇𝑆 )
5 lcvfbr.u ( 𝜑𝑈𝑆 )
6 lcvpss.d ( 𝜑𝑇 𝐶 𝑈 )
7 1 2 3 4 5 lcvbr ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) )
8 6 7 mpbid ( 𝜑 → ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) )
9 8 simpld ( 𝜑𝑇𝑈 )