Metamath Proof Explorer
Description: The covers relation implies proper subset. ( cvpss analog.)
(Contributed by NM, 7-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lcvfbr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
|
|
lcvfbr.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
|
|
lcvfbr.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
|
|
lcvfbr.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
|
|
lcvfbr.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
|
|
lcvpss.d |
⊢ ( 𝜑 → 𝑇 𝐶 𝑈 ) |
|
Assertion |
lcvpss |
⊢ ( 𝜑 → 𝑇 ⊊ 𝑈 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvfbr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvfbr.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 3 |
|
lcvfbr.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
| 4 |
|
lcvfbr.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 5 |
|
lcvfbr.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lcvpss.d |
⊢ ( 𝜑 → 𝑇 𝐶 𝑈 ) |
| 7 |
1 2 3 4 5
|
lcvbr |
⊢ ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) |
| 8 |
6 7
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝜑 → 𝑇 ⊊ 𝑈 ) |