Description: The covers relation implies proper subset. ( cvpss analog.) (Contributed by NM, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcvfbr.s | |- S = ( LSubSp ` W ) |
|
lcvfbr.c | |- C = ( |
||
lcvfbr.w | |- ( ph -> W e. X ) |
||
lcvfbr.t | |- ( ph -> T e. S ) |
||
lcvfbr.u | |- ( ph -> U e. S ) |
||
lcvpss.d | |- ( ph -> T C U ) |
||
Assertion | lcvpss | |- ( ph -> T C. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvfbr.s | |- S = ( LSubSp ` W ) |
|
2 | lcvfbr.c | |- C = ( |
|
3 | lcvfbr.w | |- ( ph -> W e. X ) |
|
4 | lcvfbr.t | |- ( ph -> T e. S ) |
|
5 | lcvfbr.u | |- ( ph -> U e. S ) |
|
6 | lcvpss.d | |- ( ph -> T C U ) |
|
7 | 1 2 3 4 5 | lcvbr | |- ( ph -> ( T C U <-> ( T C. U /\ -. E. s e. S ( T C. s /\ s C. U ) ) ) ) |
8 | 6 7 | mpbid | |- ( ph -> ( T C. U /\ -. E. s e. S ( T C. s /\ s C. U ) ) ) |
9 | 8 | simpld | |- ( ph -> T C. U ) |