Metamath Proof Explorer


Theorem lcvpss

Description: The covers relation implies proper subset. ( cvpss analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S = LSubSp W
lcvfbr.c C = L W
lcvfbr.w φ W X
lcvfbr.t φ T S
lcvfbr.u φ U S
lcvpss.d φ T C U
Assertion lcvpss φ T U

Proof

Step Hyp Ref Expression
1 lcvfbr.s S = LSubSp W
2 lcvfbr.c C = L W
3 lcvfbr.w φ W X
4 lcvfbr.t φ T S
5 lcvfbr.u φ U S
6 lcvpss.d φ T C U
7 1 2 3 4 5 lcvbr φ T C U T U ¬ s S T s s U
8 6 7 mpbid φ T U ¬ s S T s s U
9 8 simpld φ T U