Metamath Proof Explorer


Theorem lcvbr

Description: The covers relation for a left vector space (or a left module). ( cvbr analog.) (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S = LSubSp W
lcvfbr.c C = L W
lcvfbr.w φ W X
lcvfbr.t φ T S
lcvfbr.u φ U S
Assertion lcvbr φ T C U T U ¬ s S T s s U

Proof

Step Hyp Ref Expression
1 lcvfbr.s S = LSubSp W
2 lcvfbr.c C = L W
3 lcvfbr.w φ W X
4 lcvfbr.t φ T S
5 lcvfbr.u φ U S
6 eleq1 t = T t S T S
7 6 anbi1d t = T t S u S T S u S
8 psseq1 t = T t u T u
9 psseq1 t = T t s T s
10 9 anbi1d t = T t s s u T s s u
11 10 rexbidv t = T s S t s s u s S T s s u
12 11 notbid t = T ¬ s S t s s u ¬ s S T s s u
13 8 12 anbi12d t = T t u ¬ s S t s s u T u ¬ s S T s s u
14 7 13 anbi12d t = T t S u S t u ¬ s S t s s u T S u S T u ¬ s S T s s u
15 eleq1 u = U u S U S
16 15 anbi2d u = U T S u S T S U S
17 psseq2 u = U T u T U
18 psseq2 u = U s u s U
19 18 anbi2d u = U T s s u T s s U
20 19 rexbidv u = U s S T s s u s S T s s U
21 20 notbid u = U ¬ s S T s s u ¬ s S T s s U
22 17 21 anbi12d u = U T u ¬ s S T s s u T U ¬ s S T s s U
23 16 22 anbi12d u = U T S u S T u ¬ s S T s s u T S U S T U ¬ s S T s s U
24 eqid t u | t S u S t u ¬ s S t s s u = t u | t S u S t u ¬ s S t s s u
25 14 23 24 brabg T S U S T t u | t S u S t u ¬ s S t s s u U T S U S T U ¬ s S T s s U
26 4 5 25 syl2anc φ T t u | t S u S t u ¬ s S t s s u U T S U S T U ¬ s S T s s U
27 1 2 3 lcvfbr φ C = t u | t S u S t u ¬ s S t s s u
28 27 breqd φ T C U T t u | t S u S t u ¬ s S t s s u U
29 4 5 jca φ T S U S
30 29 biantrurd φ T U ¬ s S T s s U T S U S T U ¬ s S T s s U
31 26 28 30 3bitr4d φ T C U T U ¬ s S T s s U