Metamath Proof Explorer


Theorem lcvbr

Description: The covers relation for a left vector space (or a left module). ( cvbr analog.) (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S=LSubSpW
lcvfbr.c C=LW
lcvfbr.w φWX
lcvfbr.t φTS
lcvfbr.u φUS
Assertion lcvbr φTCUTU¬sSTssU

Proof

Step Hyp Ref Expression
1 lcvfbr.s S=LSubSpW
2 lcvfbr.c C=LW
3 lcvfbr.w φWX
4 lcvfbr.t φTS
5 lcvfbr.u φUS
6 eleq1 t=TtSTS
7 6 anbi1d t=TtSuSTSuS
8 psseq1 t=TtuTu
9 psseq1 t=TtsTs
10 9 anbi1d t=TtssuTssu
11 10 rexbidv t=TsStssusSTssu
12 11 notbid t=T¬sStssu¬sSTssu
13 8 12 anbi12d t=Ttu¬sStssuTu¬sSTssu
14 7 13 anbi12d t=TtSuStu¬sStssuTSuSTu¬sSTssu
15 eleq1 u=UuSUS
16 15 anbi2d u=UTSuSTSUS
17 psseq2 u=UTuTU
18 psseq2 u=UsusU
19 18 anbi2d u=UTssuTssU
20 19 rexbidv u=UsSTssusSTssU
21 20 notbid u=U¬sSTssu¬sSTssU
22 17 21 anbi12d u=UTu¬sSTssuTU¬sSTssU
23 16 22 anbi12d u=UTSuSTu¬sSTssuTSUSTU¬sSTssU
24 eqid tu|tSuStu¬sStssu=tu|tSuStu¬sStssu
25 14 23 24 brabg TSUSTtu|tSuStu¬sStssuUTSUSTU¬sSTssU
26 4 5 25 syl2anc φTtu|tSuStu¬sStssuUTSUSTU¬sSTssU
27 1 2 3 lcvfbr φC=tu|tSuStu¬sStssu
28 27 breqd φTCUTtu|tSuStu¬sStssuU
29 4 5 jca φTSUS
30 29 biantrurd φTU¬sSTssUTSUSTU¬sSTssU
31 26 28 30 3bitr4d φTCUTU¬sSTssU