Step |
Hyp |
Ref |
Expression |
1 |
|
lcvfbr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lcvfbr.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
3 |
|
lcvfbr.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
4 |
|
lcvfbr.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
5 |
|
lcvfbr.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
eleq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ∈ 𝑆 ↔ 𝑇 ∈ 𝑆 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ↔ ( 𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) ) |
8 |
|
psseq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ⊊ 𝑢 ↔ 𝑇 ⊊ 𝑢 ) ) |
9 |
|
psseq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ⊊ 𝑠 ↔ 𝑇 ⊊ 𝑠 ) ) |
10 |
9
|
anbi1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) |
12 |
11
|
notbid |
⊢ ( 𝑡 = 𝑇 → ( ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) |
13 |
8 12
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ↔ ( 𝑇 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ) |
14 |
7 13
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ↔ ( ( 𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ∈ 𝑆 ↔ 𝑈 ∈ 𝑆 ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ↔ ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ) ) |
17 |
|
psseq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑇 ⊊ 𝑢 ↔ 𝑇 ⊊ 𝑈 ) ) |
18 |
|
psseq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑠 ⊊ 𝑢 ↔ 𝑠 ⊊ 𝑈 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) |
21 |
20
|
notbid |
⊢ ( 𝑢 = 𝑈 → ( ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) |
22 |
17 21
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑇 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ↔ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) |
23 |
16 22
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ↔ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) ) |
24 |
|
eqid |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } |
25 |
14 23 24
|
brabg |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } 𝑈 ↔ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) ) |
26 |
4 5 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } 𝑈 ↔ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) ) |
27 |
1 2 3
|
lcvfbr |
⊢ ( 𝜑 → 𝐶 = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |
28 |
27
|
breqd |
⊢ ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ 𝑇 { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } 𝑈 ) ) |
29 |
4 5
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ) |
30 |
29
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ↔ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) ) |
31 |
26 28 30
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇 ⊊ 𝑈 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈 ) ) ) ) |