Metamath Proof Explorer


Theorem lcvbr

Description: The covers relation for a left vector space (or a left module). ( cvbr analog.) (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvfbr.c 𝐶 = ( ⋖L𝑊 )
lcvfbr.w ( 𝜑𝑊𝑋 )
lcvfbr.t ( 𝜑𝑇𝑆 )
lcvfbr.u ( 𝜑𝑈𝑆 )
Assertion lcvbr ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvfbr.c 𝐶 = ( ⋖L𝑊 )
3 lcvfbr.w ( 𝜑𝑊𝑋 )
4 lcvfbr.t ( 𝜑𝑇𝑆 )
5 lcvfbr.u ( 𝜑𝑈𝑆 )
6 eleq1 ( 𝑡 = 𝑇 → ( 𝑡𝑆𝑇𝑆 ) )
7 6 anbi1d ( 𝑡 = 𝑇 → ( ( 𝑡𝑆𝑢𝑆 ) ↔ ( 𝑇𝑆𝑢𝑆 ) ) )
8 psseq1 ( 𝑡 = 𝑇 → ( 𝑡𝑢𝑇𝑢 ) )
9 psseq1 ( 𝑡 = 𝑇 → ( 𝑡𝑠𝑇𝑠 ) )
10 9 anbi1d ( 𝑡 = 𝑇 → ( ( 𝑡𝑠𝑠𝑢 ) ↔ ( 𝑇𝑠𝑠𝑢 ) ) )
11 10 rexbidv ( 𝑡 = 𝑇 → ( ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ↔ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) )
12 11 notbid ( 𝑡 = 𝑇 → ( ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ↔ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) )
13 8 12 anbi12d ( 𝑡 = 𝑇 → ( ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ↔ ( 𝑇𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) ) )
14 7 13 anbi12d ( 𝑡 = 𝑇 → ( ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) ↔ ( ( 𝑇𝑆𝑢𝑆 ) ∧ ( 𝑇𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) ) ) )
15 eleq1 ( 𝑢 = 𝑈 → ( 𝑢𝑆𝑈𝑆 ) )
16 15 anbi2d ( 𝑢 = 𝑈 → ( ( 𝑇𝑆𝑢𝑆 ) ↔ ( 𝑇𝑆𝑈𝑆 ) ) )
17 psseq2 ( 𝑢 = 𝑈 → ( 𝑇𝑢𝑇𝑈 ) )
18 psseq2 ( 𝑢 = 𝑈 → ( 𝑠𝑢𝑠𝑈 ) )
19 18 anbi2d ( 𝑢 = 𝑈 → ( ( 𝑇𝑠𝑠𝑢 ) ↔ ( 𝑇𝑠𝑠𝑈 ) ) )
20 19 rexbidv ( 𝑢 = 𝑈 → ( ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ↔ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) )
21 20 notbid ( 𝑢 = 𝑈 → ( ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ↔ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) )
22 17 21 anbi12d ( 𝑢 = 𝑈 → ( ( 𝑇𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) )
23 16 22 anbi12d ( 𝑢 = 𝑈 → ( ( ( 𝑇𝑆𝑢𝑆 ) ∧ ( 𝑇𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑢 ) ) ) ↔ ( ( 𝑇𝑆𝑈𝑆 ) ∧ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) ) )
24 eqid { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) } = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) }
25 14 23 24 brabg ( ( 𝑇𝑆𝑈𝑆 ) → ( 𝑇 { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) } 𝑈 ↔ ( ( 𝑇𝑆𝑈𝑆 ) ∧ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) ) )
26 4 5 25 syl2anc ( 𝜑 → ( 𝑇 { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) } 𝑈 ↔ ( ( 𝑇𝑆𝑈𝑆 ) ∧ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) ) )
27 1 2 3 lcvfbr ( 𝜑𝐶 = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) } )
28 27 breqd ( 𝜑 → ( 𝑇 𝐶 𝑈𝑇 { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑡𝑆𝑢𝑆 ) ∧ ( 𝑡𝑢 ∧ ¬ ∃ 𝑠𝑆 ( 𝑡𝑠𝑠𝑢 ) ) ) } 𝑈 ) )
29 4 5 jca ( 𝜑 → ( 𝑇𝑆𝑈𝑆 ) )
30 29 biantrurd ( 𝜑 → ( ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ↔ ( ( 𝑇𝑆𝑈𝑆 ) ∧ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) ) )
31 26 28 30 3bitr4d ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) )