Step |
Hyp |
Ref |
Expression |
1 |
|
lcvfbr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lcvfbr.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
3 |
|
lcvfbr.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
4 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝑆 ) |
7 |
6
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ↔ 𝑡 ∈ 𝑆 ) ) |
8 |
6
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑢 ∈ ( LSubSp ‘ 𝑤 ) ↔ 𝑢 ∈ 𝑆 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∧ 𝑢 ∈ ( LSubSp ‘ 𝑤 ) ) ↔ ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) ) |
10 |
6
|
rexeqdv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) |
11 |
10
|
notbid |
⊢ ( 𝑤 = 𝑊 → ( ¬ ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ↔ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ↔ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ) |
13 |
9 12
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∧ 𝑢 ∈ ( LSubSp ‘ 𝑤 ) ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ↔ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) ) ) |
14 |
13
|
opabbidv |
⊢ ( 𝑤 = 𝑊 → { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∧ 𝑢 ∈ ( LSubSp ‘ 𝑤 ) ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |
15 |
|
df-lcv |
⊢ ⋖L = ( 𝑤 ∈ V ↦ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∧ 𝑢 ∈ ( LSubSp ‘ 𝑤 ) ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |
16 |
1
|
fvexi |
⊢ 𝑆 ∈ V |
17 |
16 16
|
xpex |
⊢ ( 𝑆 × 𝑆 ) ∈ V |
18 |
|
opabssxp |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ⊆ ( 𝑆 × 𝑆 ) |
19 |
17 18
|
ssexi |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ∈ V |
20 |
14 15 19
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ⋖L ‘ 𝑊 ) = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |
21 |
3 4 20
|
3syl |
⊢ ( 𝜑 → ( ⋖L ‘ 𝑊 ) = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |
22 |
2 21
|
syl5eq |
⊢ ( 𝜑 → 𝐶 = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑡 ⊊ 𝑢 ∧ ¬ ∃ 𝑠 ∈ 𝑆 ( 𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢 ) ) ) } ) |