Metamath Proof Explorer


Theorem lcvnbtwn

Description: The covers relation implies no in-betweenness. ( cvnbtwn analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S = LSubSp W
lcvnbtwn.c C = L W
lcvnbtwn.w φ W X
lcvnbtwn.r φ R S
lcvnbtwn.t φ T S
lcvnbtwn.u φ U S
lcvnbtwn.d φ R C T
Assertion lcvnbtwn φ ¬ R U U T

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S = LSubSp W
2 lcvnbtwn.c C = L W
3 lcvnbtwn.w φ W X
4 lcvnbtwn.r φ R S
5 lcvnbtwn.t φ T S
6 lcvnbtwn.u φ U S
7 lcvnbtwn.d φ R C T
8 1 2 3 4 5 lcvbr φ R C T R T ¬ u S R u u T
9 7 8 mpbid φ R T ¬ u S R u u T
10 9 simprd φ ¬ u S R u u T
11 psseq2 u = U R u R U
12 psseq1 u = U u T U T
13 11 12 anbi12d u = U R u u T R U U T
14 13 rspcev U S R U U T u S R u u T
15 6 14 sylan φ R U U T u S R u u T
16 10 15 mtand φ ¬ R U U T