Metamath Proof Explorer


Theorem lcvntr

Description: The covers relation is not transitive. ( cvntr analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S = LSubSp W
lcvnbtwn.c C = L W
lcvnbtwn.w φ W X
lcvnbtwn.r φ R S
lcvnbtwn.t φ T S
lcvnbtwn.u φ U S
lcvnbtwn.d φ R C T
lcvntr.p φ T C U
Assertion lcvntr φ ¬ R C U

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S = LSubSp W
2 lcvnbtwn.c C = L W
3 lcvnbtwn.w φ W X
4 lcvnbtwn.r φ R S
5 lcvnbtwn.t φ T S
6 lcvnbtwn.u φ U S
7 lcvnbtwn.d φ R C T
8 lcvntr.p φ T C U
9 1 2 3 4 5 7 lcvpss φ R T
10 1 2 3 5 6 8 lcvpss φ T U
11 9 10 jca φ R T T U
12 3 adantr φ R C U W X
13 4 adantr φ R C U R S
14 6 adantr φ R C U U S
15 5 adantr φ R C U T S
16 simpr φ R C U R C U
17 1 2 12 13 14 15 16 lcvnbtwn φ R C U ¬ R T T U
18 17 ex φ R C U ¬ R T T U
19 11 18 mt2d φ ¬ R C U