Metamath Proof Explorer


Theorem lcvntr

Description: The covers relation is not transitive. ( cvntr analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s
|- S = ( LSubSp ` W )
lcvnbtwn.c
|- C = ( 
    lcvnbtwn.w
    |- ( ph -> W e. X )
    lcvnbtwn.r
    |- ( ph -> R e. S )
    lcvnbtwn.t
    |- ( ph -> T e. S )
    lcvnbtwn.u
    |- ( ph -> U e. S )
    lcvnbtwn.d
    |- ( ph -> R C T )
    lcvntr.p
    |- ( ph -> T C U )
    Assertion lcvntr
    |- ( ph -> -. R C U )

    Proof

    Step Hyp Ref Expression
    1 lcvnbtwn.s
     |-  S = ( LSubSp ` W )
    2 lcvnbtwn.c
     |-  C = ( 
      3 lcvnbtwn.w
       |-  ( ph -> W e. X )
      4 lcvnbtwn.r
       |-  ( ph -> R e. S )
      5 lcvnbtwn.t
       |-  ( ph -> T e. S )
      6 lcvnbtwn.u
       |-  ( ph -> U e. S )
      7 lcvnbtwn.d
       |-  ( ph -> R C T )
      8 lcvntr.p
       |-  ( ph -> T C U )
      9 1 2 3 4 5 7 lcvpss
       |-  ( ph -> R C. T )
      10 1 2 3 5 6 8 lcvpss
       |-  ( ph -> T C. U )
      11 9 10 jca
       |-  ( ph -> ( R C. T /\ T C. U ) )
      12 3 adantr
       |-  ( ( ph /\ R C U ) -> W e. X )
      13 4 adantr
       |-  ( ( ph /\ R C U ) -> R e. S )
      14 6 adantr
       |-  ( ( ph /\ R C U ) -> U e. S )
      15 5 adantr
       |-  ( ( ph /\ R C U ) -> T e. S )
      16 simpr
       |-  ( ( ph /\ R C U ) -> R C U )
      17 1 2 12 13 14 15 16 lcvnbtwn
       |-  ( ( ph /\ R C U ) -> -. ( R C. T /\ T C. U ) )
      18 17 ex
       |-  ( ph -> ( R C U -> -. ( R C. T /\ T C. U ) ) )
      19 11 18 mt2d
       |-  ( ph -> -. R C U )