| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvnbtwn.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lcvnbtwn.c |
|- C = (
|
| 3 |
|
lcvnbtwn.w |
|- ( ph -> W e. X ) |
| 4 |
|
lcvnbtwn.r |
|- ( ph -> R e. S ) |
| 5 |
|
lcvnbtwn.t |
|- ( ph -> T e. S ) |
| 6 |
|
lcvnbtwn.u |
|- ( ph -> U e. S ) |
| 7 |
|
lcvnbtwn.d |
|- ( ph -> R C T ) |
| 8 |
|
lcvntr.p |
|- ( ph -> T C U ) |
| 9 |
1 2 3 4 5 7
|
lcvpss |
|- ( ph -> R C. T ) |
| 10 |
1 2 3 5 6 8
|
lcvpss |
|- ( ph -> T C. U ) |
| 11 |
9 10
|
jca |
|- ( ph -> ( R C. T /\ T C. U ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ R C U ) -> W e. X ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ R C U ) -> R e. S ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ R C U ) -> U e. S ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ R C U ) -> T e. S ) |
| 16 |
|
simpr |
|- ( ( ph /\ R C U ) -> R C U ) |
| 17 |
1 2 12 13 14 15 16
|
lcvnbtwn |
|- ( ( ph /\ R C U ) -> -. ( R C. T /\ T C. U ) ) |
| 18 |
17
|
ex |
|- ( ph -> ( R C U -> -. ( R C. T /\ T C. U ) ) ) |
| 19 |
11 18
|
mt2d |
|- ( ph -> -. R C U ) |