Step |
Hyp |
Ref |
Expression |
1 |
|
lcvnbtwn.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvnbtwn.c |
|- C = (
|
3 |
|
lcvnbtwn.w |
|- ( ph -> W e. X ) |
4 |
|
lcvnbtwn.r |
|- ( ph -> R e. S ) |
5 |
|
lcvnbtwn.t |
|- ( ph -> T e. S ) |
6 |
|
lcvnbtwn.u |
|- ( ph -> U e. S ) |
7 |
|
lcvnbtwn.d |
|- ( ph -> R C T ) |
8 |
|
lcvntr.p |
|- ( ph -> T C U ) |
9 |
1 2 3 4 5 7
|
lcvpss |
|- ( ph -> R C. T ) |
10 |
1 2 3 5 6 8
|
lcvpss |
|- ( ph -> T C. U ) |
11 |
9 10
|
jca |
|- ( ph -> ( R C. T /\ T C. U ) ) |
12 |
3
|
adantr |
|- ( ( ph /\ R C U ) -> W e. X ) |
13 |
4
|
adantr |
|- ( ( ph /\ R C U ) -> R e. S ) |
14 |
6
|
adantr |
|- ( ( ph /\ R C U ) -> U e. S ) |
15 |
5
|
adantr |
|- ( ( ph /\ R C U ) -> T e. S ) |
16 |
|
simpr |
|- ( ( ph /\ R C U ) -> R C U ) |
17 |
1 2 12 13 14 15 16
|
lcvnbtwn |
|- ( ( ph /\ R C U ) -> -. ( R C. T /\ T C. U ) ) |
18 |
17
|
ex |
|- ( ph -> ( R C U -> -. ( R C. T /\ T C. U ) ) ) |
19 |
11 18
|
mt2d |
|- ( ph -> -. R C U ) |