Metamath Proof Explorer


Theorem lcvnbtwn2

Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s
|- S = ( LSubSp ` W )
lcvnbtwn.c
|- C = ( 
    lcvnbtwn.w
    |- ( ph -> W e. X )
    lcvnbtwn.r
    |- ( ph -> R e. S )
    lcvnbtwn.t
    |- ( ph -> T e. S )
    lcvnbtwn.u
    |- ( ph -> U e. S )
    lcvnbtwn.d
    |- ( ph -> R C T )
    lcvnbtwn2.p
    |- ( ph -> R C. U )
    lcvnbtwn2.q
    |- ( ph -> U C_ T )
    Assertion lcvnbtwn2
    |- ( ph -> U = T )

    Proof

    Step Hyp Ref Expression
    1 lcvnbtwn.s
     |-  S = ( LSubSp ` W )
    2 lcvnbtwn.c
     |-  C = ( 
      3 lcvnbtwn.w
       |-  ( ph -> W e. X )
      4 lcvnbtwn.r
       |-  ( ph -> R e. S )
      5 lcvnbtwn.t
       |-  ( ph -> T e. S )
      6 lcvnbtwn.u
       |-  ( ph -> U e. S )
      7 lcvnbtwn.d
       |-  ( ph -> R C T )
      8 lcvnbtwn2.p
       |-  ( ph -> R C. U )
      9 lcvnbtwn2.q
       |-  ( ph -> U C_ T )
      10 1 2 3 4 5 6 7 lcvnbtwn
       |-  ( ph -> -. ( R C. U /\ U C. T ) )
      11 iman
       |-  ( ( ( R C. U /\ U C_ T ) -> U = T ) <-> -. ( ( R C. U /\ U C_ T ) /\ -. U = T ) )
      12 anass
       |-  ( ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> ( R C. U /\ ( U C_ T /\ -. U = T ) ) )
      13 dfpss2
       |-  ( U C. T <-> ( U C_ T /\ -. U = T ) )
      14 13 anbi2i
       |-  ( ( R C. U /\ U C. T ) <-> ( R C. U /\ ( U C_ T /\ -. U = T ) ) )
      15 12 14 bitr4i
       |-  ( ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> ( R C. U /\ U C. T ) )
      16 15 notbii
       |-  ( -. ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> -. ( R C. U /\ U C. T ) )
      17 11 16 bitr2i
       |-  ( -. ( R C. U /\ U C. T ) <-> ( ( R C. U /\ U C_ T ) -> U = T ) )
      18 10 17 sylib
       |-  ( ph -> ( ( R C. U /\ U C_ T ) -> U = T ) )
      19 8 9 18 mp2and
       |-  ( ph -> U = T )