Step |
Hyp |
Ref |
Expression |
1 |
|
lcvnbtwn.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvnbtwn.c |
|- C = (
|
3 |
|
lcvnbtwn.w |
|- ( ph -> W e. X ) |
4 |
|
lcvnbtwn.r |
|- ( ph -> R e. S ) |
5 |
|
lcvnbtwn.t |
|- ( ph -> T e. S ) |
6 |
|
lcvnbtwn.u |
|- ( ph -> U e. S ) |
7 |
|
lcvnbtwn.d |
|- ( ph -> R C T ) |
8 |
|
lcvnbtwn2.p |
|- ( ph -> R C. U ) |
9 |
|
lcvnbtwn2.q |
|- ( ph -> U C_ T ) |
10 |
1 2 3 4 5 6 7
|
lcvnbtwn |
|- ( ph -> -. ( R C. U /\ U C. T ) ) |
11 |
|
iman |
|- ( ( ( R C. U /\ U C_ T ) -> U = T ) <-> -. ( ( R C. U /\ U C_ T ) /\ -. U = T ) ) |
12 |
|
anass |
|- ( ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> ( R C. U /\ ( U C_ T /\ -. U = T ) ) ) |
13 |
|
dfpss2 |
|- ( U C. T <-> ( U C_ T /\ -. U = T ) ) |
14 |
13
|
anbi2i |
|- ( ( R C. U /\ U C. T ) <-> ( R C. U /\ ( U C_ T /\ -. U = T ) ) ) |
15 |
12 14
|
bitr4i |
|- ( ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> ( R C. U /\ U C. T ) ) |
16 |
15
|
notbii |
|- ( -. ( ( R C. U /\ U C_ T ) /\ -. U = T ) <-> -. ( R C. U /\ U C. T ) ) |
17 |
11 16
|
bitr2i |
|- ( -. ( R C. U /\ U C. T ) <-> ( ( R C. U /\ U C_ T ) -> U = T ) ) |
18 |
10 17
|
sylib |
|- ( ph -> ( ( R C. U /\ U C_ T ) -> U = T ) ) |
19 |
8 9 18
|
mp2and |
|- ( ph -> U = T ) |