Step |
Hyp |
Ref |
Expression |
1 |
|
lcvnbtwn.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvnbtwn.c |
|- C = (
|
3 |
|
lcvnbtwn.w |
|- ( ph -> W e. X ) |
4 |
|
lcvnbtwn.r |
|- ( ph -> R e. S ) |
5 |
|
lcvnbtwn.t |
|- ( ph -> T e. S ) |
6 |
|
lcvnbtwn.u |
|- ( ph -> U e. S ) |
7 |
|
lcvnbtwn.d |
|- ( ph -> R C T ) |
8 |
|
lcvnbtwn3.p |
|- ( ph -> R C_ U ) |
9 |
|
lcvnbtwn3.q |
|- ( ph -> U C. T ) |
10 |
1 2 3 4 5 6 7
|
lcvnbtwn |
|- ( ph -> -. ( R C. U /\ U C. T ) ) |
11 |
|
iman |
|- ( ( ( R C_ U /\ U C. T ) -> R = U ) <-> -. ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
12 |
|
eqcom |
|- ( U = R <-> R = U ) |
13 |
12
|
imbi2i |
|- ( ( ( R C_ U /\ U C. T ) -> U = R ) <-> ( ( R C_ U /\ U C. T ) -> R = U ) ) |
14 |
|
dfpss2 |
|- ( R C. U <-> ( R C_ U /\ -. R = U ) ) |
15 |
14
|
anbi1i |
|- ( ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ -. R = U ) /\ U C. T ) ) |
16 |
|
an32 |
|- ( ( ( R C_ U /\ -. R = U ) /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
17 |
15 16
|
bitri |
|- ( ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
18 |
17
|
notbii |
|- ( -. ( R C. U /\ U C. T ) <-> -. ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
19 |
11 13 18
|
3bitr4ri |
|- ( -. ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) -> U = R ) ) |
20 |
10 19
|
sylib |
|- ( ph -> ( ( R C_ U /\ U C. T ) -> U = R ) ) |
21 |
8 9 20
|
mp2and |
|- ( ph -> U = R ) |