| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvnbtwn.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lcvnbtwn.c |
|- C = (
|
| 3 |
|
lcvnbtwn.w |
|- ( ph -> W e. X ) |
| 4 |
|
lcvnbtwn.r |
|- ( ph -> R e. S ) |
| 5 |
|
lcvnbtwn.t |
|- ( ph -> T e. S ) |
| 6 |
|
lcvnbtwn.u |
|- ( ph -> U e. S ) |
| 7 |
|
lcvnbtwn.d |
|- ( ph -> R C T ) |
| 8 |
|
lcvnbtwn3.p |
|- ( ph -> R C_ U ) |
| 9 |
|
lcvnbtwn3.q |
|- ( ph -> U C. T ) |
| 10 |
1 2 3 4 5 6 7
|
lcvnbtwn |
|- ( ph -> -. ( R C. U /\ U C. T ) ) |
| 11 |
|
iman |
|- ( ( ( R C_ U /\ U C. T ) -> R = U ) <-> -. ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
| 12 |
|
eqcom |
|- ( U = R <-> R = U ) |
| 13 |
12
|
imbi2i |
|- ( ( ( R C_ U /\ U C. T ) -> U = R ) <-> ( ( R C_ U /\ U C. T ) -> R = U ) ) |
| 14 |
|
dfpss2 |
|- ( R C. U <-> ( R C_ U /\ -. R = U ) ) |
| 15 |
14
|
anbi1i |
|- ( ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ -. R = U ) /\ U C. T ) ) |
| 16 |
|
an32 |
|- ( ( ( R C_ U /\ -. R = U ) /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
| 17 |
15 16
|
bitri |
|- ( ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
| 18 |
17
|
notbii |
|- ( -. ( R C. U /\ U C. T ) <-> -. ( ( R C_ U /\ U C. T ) /\ -. R = U ) ) |
| 19 |
11 13 18
|
3bitr4ri |
|- ( -. ( R C. U /\ U C. T ) <-> ( ( R C_ U /\ U C. T ) -> U = R ) ) |
| 20 |
10 19
|
sylib |
|- ( ph -> ( ( R C_ U /\ U C. T ) -> U = R ) ) |
| 21 |
8 9 20
|
mp2and |
|- ( ph -> U = R ) |