Metamath Proof Explorer


Theorem lcvnbtwn3

Description: The covers relation implies no in-betweenness. ( cvnbtwn3 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S=LSubSpW
lcvnbtwn.c C=LW
lcvnbtwn.w φWX
lcvnbtwn.r φRS
lcvnbtwn.t φTS
lcvnbtwn.u φUS
lcvnbtwn.d φRCT
lcvnbtwn3.p φRU
lcvnbtwn3.q φUT
Assertion lcvnbtwn3 φU=R

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S=LSubSpW
2 lcvnbtwn.c C=LW
3 lcvnbtwn.w φWX
4 lcvnbtwn.r φRS
5 lcvnbtwn.t φTS
6 lcvnbtwn.u φUS
7 lcvnbtwn.d φRCT
8 lcvnbtwn3.p φRU
9 lcvnbtwn3.q φUT
10 1 2 3 4 5 6 7 lcvnbtwn φ¬RUUT
11 iman RUUTR=U¬RUUT¬R=U
12 eqcom U=RR=U
13 12 imbi2i RUUTU=RRUUTR=U
14 dfpss2 RURU¬R=U
15 14 anbi1i RUUTRU¬R=UUT
16 an32 RU¬R=UUTRUUT¬R=U
17 15 16 bitri RUUTRUUT¬R=U
18 17 notbii ¬RUUT¬RUUT¬R=U
19 11 13 18 3bitr4ri ¬RUUTRUUTU=R
20 10 19 sylib φRUUTU=R
21 8 9 20 mp2and φU=R