Step |
Hyp |
Ref |
Expression |
1 |
|
lcvnbtwn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lcvnbtwn.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
3 |
|
lcvnbtwn.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
4 |
|
lcvnbtwn.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
5 |
|
lcvnbtwn.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
6 |
|
lcvnbtwn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
lcvnbtwn.d |
⊢ ( 𝜑 → 𝑅 𝐶 𝑇 ) |
8 |
|
lcvnbtwn3.p |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
9 |
|
lcvnbtwn3.q |
⊢ ( 𝜑 → 𝑈 ⊊ 𝑇 ) |
10 |
1 2 3 4 5 6 7
|
lcvnbtwn |
⊢ ( 𝜑 → ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) |
11 |
|
iman |
⊢ ( ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) → 𝑅 = 𝑈 ) ↔ ¬ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ∧ ¬ 𝑅 = 𝑈 ) ) |
12 |
|
eqcom |
⊢ ( 𝑈 = 𝑅 ↔ 𝑅 = 𝑈 ) |
13 |
12
|
imbi2i |
⊢ ( ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) → 𝑈 = 𝑅 ) ↔ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) → 𝑅 = 𝑈 ) ) |
14 |
|
dfpss2 |
⊢ ( 𝑅 ⊊ 𝑈 ↔ ( 𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈 ) ) |
15 |
14
|
anbi1i |
⊢ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ( ( 𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈 ) ∧ 𝑈 ⊊ 𝑇 ) ) |
16 |
|
an32 |
⊢ ( ( ( 𝑅 ⊆ 𝑈 ∧ ¬ 𝑅 = 𝑈 ) ∧ 𝑈 ⊊ 𝑇 ) ↔ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ∧ ¬ 𝑅 = 𝑈 ) ) |
17 |
15 16
|
bitri |
⊢ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ∧ ¬ 𝑅 = 𝑈 ) ) |
18 |
17
|
notbii |
⊢ ( ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ¬ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ∧ ¬ 𝑅 = 𝑈 ) ) |
19 |
11 13 18
|
3bitr4ri |
⊢ ( ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) → 𝑈 = 𝑅 ) ) |
20 |
10 19
|
sylib |
⊢ ( 𝜑 → ( ( 𝑅 ⊆ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) → 𝑈 = 𝑅 ) ) |
21 |
8 9 20
|
mp2and |
⊢ ( 𝜑 → 𝑈 = 𝑅 ) |