Step |
Hyp |
Ref |
Expression |
1 |
|
lcvnbtwn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lcvnbtwn.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
3 |
|
lcvnbtwn.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
4 |
|
lcvnbtwn.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
5 |
|
lcvnbtwn.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
6 |
|
lcvnbtwn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
lcvnbtwn.d |
⊢ ( 𝜑 → 𝑅 𝐶 𝑇 ) |
8 |
1 2 3 4 5
|
lcvbr |
⊢ ( 𝜑 → ( 𝑅 𝐶 𝑇 ↔ ( 𝑅 ⊊ 𝑇 ∧ ¬ ∃ 𝑢 ∈ 𝑆 ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ) ) ) |
9 |
7 8
|
mpbid |
⊢ ( 𝜑 → ( 𝑅 ⊊ 𝑇 ∧ ¬ ∃ 𝑢 ∈ 𝑆 ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → ¬ ∃ 𝑢 ∈ 𝑆 ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ) |
11 |
|
psseq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑅 ⊊ 𝑢 ↔ 𝑅 ⊊ 𝑈 ) ) |
12 |
|
psseq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ⊊ 𝑇 ↔ 𝑈 ⊊ 𝑇 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ↔ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) ) |
14 |
13
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ) |
15 |
6 14
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇 ) ) |
16 |
10 15
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) |