Metamath Proof Explorer


Theorem lsmcv2

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of Kalmbach p. 153. ( spansncv2 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsmcv2.v 𝑉 = ( Base ‘ 𝑊 )
lsmcv2.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsmcv2.n 𝑁 = ( LSpan ‘ 𝑊 )
lsmcv2.p = ( LSSum ‘ 𝑊 )
lsmcv2.c 𝐶 = ( ⋖L𝑊 )
lsmcv2.w ( 𝜑𝑊 ∈ LVec )
lsmcv2.u ( 𝜑𝑈𝑆 )
lsmcv2.x ( 𝜑𝑋𝑉 )
lsmcv2.l ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 )
Assertion lsmcv2 ( 𝜑𝑈 𝐶 ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )

Proof

Step Hyp Ref Expression
1 lsmcv2.v 𝑉 = ( Base ‘ 𝑊 )
2 lsmcv2.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lsmcv2.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lsmcv2.p = ( LSSum ‘ 𝑊 )
5 lsmcv2.c 𝐶 = ( ⋖L𝑊 )
6 lsmcv2.w ( 𝜑𝑊 ∈ LVec )
7 lsmcv2.u ( 𝜑𝑈𝑆 )
8 lsmcv2.x ( 𝜑𝑋𝑉 )
9 lsmcv2.l ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 )
10 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
11 6 10 syl ( 𝜑𝑊 ∈ LMod )
12 2 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
13 11 12 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
14 13 7 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
15 1 2 3 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 )
16 11 8 15 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 )
17 13 16 sseldd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
18 4 14 17 lssnle ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈𝑈 ⊊ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) )
19 9 18 mpbid ( 𝜑𝑈 ⊊ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )
20 3simpa ( ( 𝜑𝑥𝑆 ∧ ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) → ( 𝜑𝑥𝑆 ) )
21 simp3l ( ( 𝜑𝑥𝑆 ∧ ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑈𝑥 )
22 simp3r ( ( 𝜑𝑥𝑆 ∧ ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )
23 6 adantr ( ( 𝜑𝑥𝑆 ) → 𝑊 ∈ LVec )
24 7 adantr ( ( 𝜑𝑥𝑆 ) → 𝑈𝑆 )
25 simpr ( ( 𝜑𝑥𝑆 ) → 𝑥𝑆 )
26 8 adantr ( ( 𝜑𝑥𝑆 ) → 𝑋𝑉 )
27 1 2 3 4 23 24 25 26 lsmcv ( ( ( 𝜑𝑥𝑆 ) ∧ 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )
28 20 21 22 27 syl3anc ( ( 𝜑𝑥𝑆 ∧ ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑥 = ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )
29 28 3exp ( 𝜑 → ( 𝑥𝑆 → ( ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) )
30 29 ralrimiv ( 𝜑 → ∀ 𝑥𝑆 ( ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) )
31 2 4 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝑆 )
32 11 7 16 31 syl3anc ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝑆 )
33 2 5 6 7 32 lcvbr2 ( 𝜑 → ( 𝑈 𝐶 ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ↔ ( 𝑈 ⊊ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ∧ ∀ 𝑥𝑆 ( ( 𝑈𝑥𝑥 ⊆ ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) ) ) ) )
34 19 30 33 mpbir2and ( 𝜑𝑈 𝐶 ( 𝑈 ( 𝑁 ‘ { 𝑋 } ) ) )