| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcv2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsmcv2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsmcv2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lsmcv2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 5 |
|
lsmcv2.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 6 |
|
lsmcv2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lsmcv2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
lsmcv2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
lsmcv2.l |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
13 7
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
1 2 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 16 |
11 8 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 17 |
13 16
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 18 |
4 14 17
|
lssnle |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ↔ 𝑈 ⊊ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 19 |
9 18
|
mpbid |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 20 |
|
3simpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) → ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ) |
| 21 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑈 ⊊ 𝑥 ) |
| 22 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑊 ∈ LVec ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑈 ∈ 𝑆 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 ∈ 𝑉 ) |
| 27 |
1 2 3 4 23 24 25 26
|
lsmcv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 28 |
20 21 22 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) → 𝑥 = ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 29 |
28
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) ) |
| 30 |
29
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 31 |
2 4
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝑆 ) |
| 32 |
11 7 16 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝑆 ) |
| 33 |
2 5 6 7 32
|
lcvbr2 |
⊢ ( 𝜑 → ( 𝑈 𝐶 ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ( 𝑈 ⊊ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑥 = ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ) ) ) |
| 34 |
19 30 33
|
mpbir2and |
⊢ ( 𝜑 → 𝑈 𝐶 ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |