Metamath Proof Explorer


Theorem lcvnbtwn2

Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvnbtwn.c 𝐶 = ( ⋖L𝑊 )
lcvnbtwn.w ( 𝜑𝑊𝑋 )
lcvnbtwn.r ( 𝜑𝑅𝑆 )
lcvnbtwn.t ( 𝜑𝑇𝑆 )
lcvnbtwn.u ( 𝜑𝑈𝑆 )
lcvnbtwn.d ( 𝜑𝑅 𝐶 𝑇 )
lcvnbtwn2.p ( 𝜑𝑅𝑈 )
lcvnbtwn2.q ( 𝜑𝑈𝑇 )
Assertion lcvnbtwn2 ( 𝜑𝑈 = 𝑇 )

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvnbtwn.c 𝐶 = ( ⋖L𝑊 )
3 lcvnbtwn.w ( 𝜑𝑊𝑋 )
4 lcvnbtwn.r ( 𝜑𝑅𝑆 )
5 lcvnbtwn.t ( 𝜑𝑇𝑆 )
6 lcvnbtwn.u ( 𝜑𝑈𝑆 )
7 lcvnbtwn.d ( 𝜑𝑅 𝐶 𝑇 )
8 lcvnbtwn2.p ( 𝜑𝑅𝑈 )
9 lcvnbtwn2.q ( 𝜑𝑈𝑇 )
10 1 2 3 4 5 6 7 lcvnbtwn ( 𝜑 → ¬ ( 𝑅𝑈𝑈𝑇 ) )
11 iman ( ( ( 𝑅𝑈𝑈𝑇 ) → 𝑈 = 𝑇 ) ↔ ¬ ( ( 𝑅𝑈𝑈𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) )
12 anass ( ( ( 𝑅𝑈𝑈𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ( 𝑅𝑈 ∧ ( 𝑈𝑇 ∧ ¬ 𝑈 = 𝑇 ) ) )
13 dfpss2 ( 𝑈𝑇 ↔ ( 𝑈𝑇 ∧ ¬ 𝑈 = 𝑇 ) )
14 13 anbi2i ( ( 𝑅𝑈𝑈𝑇 ) ↔ ( 𝑅𝑈 ∧ ( 𝑈𝑇 ∧ ¬ 𝑈 = 𝑇 ) ) )
15 12 14 bitr4i ( ( ( 𝑅𝑈𝑈𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ( 𝑅𝑈𝑈𝑇 ) )
16 15 notbii ( ¬ ( ( 𝑅𝑈𝑈𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ¬ ( 𝑅𝑈𝑈𝑇 ) )
17 11 16 bitr2i ( ¬ ( 𝑅𝑈𝑈𝑇 ) ↔ ( ( 𝑅𝑈𝑈𝑇 ) → 𝑈 = 𝑇 ) )
18 10 17 sylib ( 𝜑 → ( ( 𝑅𝑈𝑈𝑇 ) → 𝑈 = 𝑇 ) )
19 8 9 18 mp2and ( 𝜑𝑈 = 𝑇 )