| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvnbtwn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvnbtwn.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 3 |
|
lcvnbtwn.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
| 4 |
|
lcvnbtwn.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 5 |
|
lcvnbtwn.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 6 |
|
lcvnbtwn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lcvnbtwn.d |
⊢ ( 𝜑 → 𝑅 𝐶 𝑇 ) |
| 8 |
|
lcvnbtwn2.p |
⊢ ( 𝜑 → 𝑅 ⊊ 𝑈 ) |
| 9 |
|
lcvnbtwn2.q |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑇 ) |
| 10 |
1 2 3 4 5 6 7
|
lcvnbtwn |
⊢ ( 𝜑 → ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) |
| 11 |
|
iman |
⊢ ( ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) → 𝑈 = 𝑇 ) ↔ ¬ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ) |
| 12 |
|
anass |
⊢ ( ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ( 𝑅 ⊊ 𝑈 ∧ ( 𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇 ) ) ) |
| 13 |
|
dfpss2 |
⊢ ( 𝑈 ⊊ 𝑇 ↔ ( 𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇 ) ) |
| 14 |
13
|
anbi2i |
⊢ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ( 𝑅 ⊊ 𝑈 ∧ ( 𝑈 ⊆ 𝑇 ∧ ¬ 𝑈 = 𝑇 ) ) ) |
| 15 |
12 14
|
bitr4i |
⊢ ( ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) |
| 16 |
15
|
notbii |
⊢ ( ¬ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) ∧ ¬ 𝑈 = 𝑇 ) ↔ ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ) |
| 17 |
11 16
|
bitr2i |
⊢ ( ¬ ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇 ) ↔ ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) → 𝑈 = 𝑇 ) ) |
| 18 |
10 17
|
sylib |
⊢ ( 𝜑 → ( ( 𝑅 ⊊ 𝑈 ∧ 𝑈 ⊆ 𝑇 ) → 𝑈 = 𝑇 ) ) |
| 19 |
8 9 18
|
mp2and |
⊢ ( 𝜑 → 𝑈 = 𝑇 ) |