| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsat0cv.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsat0cv.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lsat0cv.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lsat0cv.c |
|- C = (
|
| 5 |
|
lsat0cv.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lsat0cv.u |
|- ( ph -> U e. S ) |
| 7 |
5
|
adantr |
|- ( ( ph /\ U e. A ) -> W e. LVec ) |
| 8 |
|
simpr |
|- ( ( ph /\ U e. A ) -> U e. A ) |
| 9 |
1 3 4 7 8
|
lsatcv0 |
|- ( ( ph /\ U e. A ) -> { .0. } C U ) |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
5 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ { .0. } C U ) -> W e. LMod ) |
| 13 |
1 2
|
lsssn0 |
|- ( W e. LMod -> { .0. } e. S ) |
| 14 |
11 13
|
syl |
|- ( ph -> { .0. } e. S ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ { .0. } C U ) -> { .0. } e. S ) |
| 16 |
6
|
adantr |
|- ( ( ph /\ { .0. } C U ) -> U e. S ) |
| 17 |
|
simpr |
|- ( ( ph /\ { .0. } C U ) -> { .0. } C U ) |
| 18 |
2 4 12 15 16 17
|
lcvpss |
|- ( ( ph /\ { .0. } C U ) -> { .0. } C. U ) |
| 19 |
|
pssnel |
|- ( { .0. } C. U -> E. x ( x e. U /\ -. x e. { .0. } ) ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ { .0. } C U ) -> E. x ( x e. U /\ -. x e. { .0. } ) ) |
| 21 |
6
|
ad2antrr |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> U e. S ) |
| 22 |
|
simprl |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> x e. U ) |
| 23 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 24 |
23 2
|
lssel |
|- ( ( U e. S /\ x e. U ) -> x e. ( Base ` W ) ) |
| 25 |
21 22 24
|
syl2anc |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> x e. ( Base ` W ) ) |
| 26 |
|
velsn |
|- ( x e. { .0. } <-> x = .0. ) |
| 27 |
26
|
biimpri |
|- ( x = .0. -> x e. { .0. } ) |
| 28 |
27
|
necon3bi |
|- ( -. x e. { .0. } -> x =/= .0. ) |
| 29 |
28
|
adantl |
|- ( ( x e. U /\ -. x e. { .0. } ) -> x =/= .0. ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> x =/= .0. ) |
| 31 |
|
eldifsn |
|- ( x e. ( ( Base ` W ) \ { .0. } ) <-> ( x e. ( Base ` W ) /\ x =/= .0. ) ) |
| 32 |
25 30 31
|
sylanbrc |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> x e. ( ( Base ` W ) \ { .0. } ) ) |
| 33 |
32 22
|
jca |
|- ( ( ( ph /\ { .0. } C U ) /\ ( x e. U /\ -. x e. { .0. } ) ) -> ( x e. ( ( Base ` W ) \ { .0. } ) /\ x e. U ) ) |
| 34 |
33
|
ex |
|- ( ( ph /\ { .0. } C U ) -> ( ( x e. U /\ -. x e. { .0. } ) -> ( x e. ( ( Base ` W ) \ { .0. } ) /\ x e. U ) ) ) |
| 35 |
34
|
eximdv |
|- ( ( ph /\ { .0. } C U ) -> ( E. x ( x e. U /\ -. x e. { .0. } ) -> E. x ( x e. ( ( Base ` W ) \ { .0. } ) /\ x e. U ) ) ) |
| 36 |
|
df-rex |
|- ( E. x e. ( ( Base ` W ) \ { .0. } ) x e. U <-> E. x ( x e. ( ( Base ` W ) \ { .0. } ) /\ x e. U ) ) |
| 37 |
35 36
|
imbitrrdi |
|- ( ( ph /\ { .0. } C U ) -> ( E. x ( x e. U /\ -. x e. { .0. } ) -> E. x e. ( ( Base ` W ) \ { .0. } ) x e. U ) ) |
| 38 |
20 37
|
mpd |
|- ( ( ph /\ { .0. } C U ) -> E. x e. ( ( Base ` W ) \ { .0. } ) x e. U ) |
| 39 |
|
simpllr |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> { .0. } C U ) |
| 40 |
2 4 5 14 6
|
lcvbr2 |
|- ( ph -> ( { .0. } C U <-> ( { .0. } C. U /\ A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ { .0. } C U ) -> ( { .0. } C U <-> ( { .0. } C. U /\ A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) ) ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> ( { .0. } C U <-> ( { .0. } C. U /\ A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) ) ) ) |
| 43 |
11
|
ad2antrr |
|- ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> W e. LMod ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> W e. LMod ) |
| 45 |
|
eldifi |
|- ( x e. ( ( Base ` W ) \ { .0. } ) -> x e. ( Base ` W ) ) |
| 46 |
45
|
adantl |
|- ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> x e. ( Base ` W ) ) |
| 47 |
46
|
ad2antrr |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> x e. ( Base ` W ) ) |
| 48 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 49 |
23 2 48
|
lspsncl |
|- ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { x } ) e. S ) |
| 50 |
44 47 49
|
syl2anc |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( ( LSpan ` W ) ` { x } ) e. S ) |
| 51 |
1 2
|
lss0ss |
|- ( ( W e. LMod /\ ( ( LSpan ` W ) ` { x } ) e. S ) -> { .0. } C_ ( ( LSpan ` W ) ` { x } ) ) |
| 52 |
44 50 51
|
syl2anc |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> { .0. } C_ ( ( LSpan ` W ) ` { x } ) ) |
| 53 |
|
eldifsni |
|- ( x e. ( ( Base ` W ) \ { .0. } ) -> x =/= .0. ) |
| 54 |
53
|
adantl |
|- ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> x =/= .0. ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> x =/= .0. ) |
| 56 |
23 1 48
|
lspsneq0 |
|- ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( ( ( LSpan ` W ) ` { x } ) = { .0. } <-> x = .0. ) ) |
| 57 |
44 47 56
|
syl2anc |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( ( ( LSpan ` W ) ` { x } ) = { .0. } <-> x = .0. ) ) |
| 58 |
57
|
necon3bid |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( ( ( LSpan ` W ) ` { x } ) =/= { .0. } <-> x =/= .0. ) ) |
| 59 |
55 58
|
mpbird |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( ( LSpan ` W ) ` { x } ) =/= { .0. } ) |
| 60 |
59
|
necomd |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> { .0. } =/= ( ( LSpan ` W ) ` { x } ) ) |
| 61 |
|
df-pss |
|- ( { .0. } C. ( ( LSpan ` W ) ` { x } ) <-> ( { .0. } C_ ( ( LSpan ` W ) ` { x } ) /\ { .0. } =/= ( ( LSpan ` W ) ` { x } ) ) ) |
| 62 |
52 60 61
|
sylanbrc |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> { .0. } C. ( ( LSpan ` W ) ` { x } ) ) |
| 63 |
6
|
ad2antrr |
|- ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> U e. S ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> U e. S ) |
| 65 |
|
simplr |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> x e. U ) |
| 66 |
2 48 44 64 65
|
ellspsn5 |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( ( LSpan ` W ) ` { x } ) C_ U ) |
| 67 |
62 66
|
jca |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( { .0. } C. ( ( LSpan ` W ) ` { x } ) /\ ( ( LSpan ` W ) ` { x } ) C_ U ) ) |
| 68 |
|
psseq2 |
|- ( s = ( ( LSpan ` W ) ` { x } ) -> ( { .0. } C. s <-> { .0. } C. ( ( LSpan ` W ) ` { x } ) ) ) |
| 69 |
|
sseq1 |
|- ( s = ( ( LSpan ` W ) ` { x } ) -> ( s C_ U <-> ( ( LSpan ` W ) ` { x } ) C_ U ) ) |
| 70 |
68 69
|
anbi12d |
|- ( s = ( ( LSpan ` W ) ` { x } ) -> ( ( { .0. } C. s /\ s C_ U ) <-> ( { .0. } C. ( ( LSpan ` W ) ` { x } ) /\ ( ( LSpan ` W ) ` { x } ) C_ U ) ) ) |
| 71 |
|
eqeq1 |
|- ( s = ( ( LSpan ` W ) ` { x } ) -> ( s = U <-> ( ( LSpan ` W ) ` { x } ) = U ) ) |
| 72 |
70 71
|
imbi12d |
|- ( s = ( ( LSpan ` W ) ` { x } ) -> ( ( ( { .0. } C. s /\ s C_ U ) -> s = U ) <-> ( ( { .0. } C. ( ( LSpan ` W ) ` { x } ) /\ ( ( LSpan ` W ) ` { x } ) C_ U ) -> ( ( LSpan ` W ) ` { x } ) = U ) ) ) |
| 73 |
72
|
rspcv |
|- ( ( ( LSpan ` W ) ` { x } ) e. S -> ( A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) -> ( ( { .0. } C. ( ( LSpan ` W ) ` { x } ) /\ ( ( LSpan ` W ) ` { x } ) C_ U ) -> ( ( LSpan ` W ) ` { x } ) = U ) ) ) |
| 74 |
50 73
|
syl |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) -> ( ( { .0. } C. ( ( LSpan ` W ) ` { x } ) /\ ( ( LSpan ` W ) ` { x } ) C_ U ) -> ( ( LSpan ` W ) ` { x } ) = U ) ) ) |
| 75 |
67 74
|
mpid |
|- ( ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) /\ { .0. } C. U ) -> ( A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) -> ( ( LSpan ` W ) ` { x } ) = U ) ) |
| 76 |
75
|
expimpd |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> ( ( { .0. } C. U /\ A. s e. S ( ( { .0. } C. s /\ s C_ U ) -> s = U ) ) -> ( ( LSpan ` W ) ` { x } ) = U ) ) |
| 77 |
42 76
|
sylbid |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> ( { .0. } C U -> ( ( LSpan ` W ) ` { x } ) = U ) ) |
| 78 |
39 77
|
mpd |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> ( ( LSpan ` W ) ` { x } ) = U ) |
| 79 |
78
|
eqcomd |
|- ( ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) /\ x e. U ) -> U = ( ( LSpan ` W ) ` { x } ) ) |
| 80 |
79
|
ex |
|- ( ( ( ph /\ { .0. } C U ) /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> ( x e. U -> U = ( ( LSpan ` W ) ` { x } ) ) ) |
| 81 |
80
|
reximdva |
|- ( ( ph /\ { .0. } C U ) -> ( E. x e. ( ( Base ` W ) \ { .0. } ) x e. U -> E. x e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { x } ) ) ) |
| 82 |
38 81
|
mpd |
|- ( ( ph /\ { .0. } C U ) -> E. x e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { x } ) ) |
| 83 |
5
|
adantr |
|- ( ( ph /\ { .0. } C U ) -> W e. LVec ) |
| 84 |
23 48 1 3
|
islsat |
|- ( W e. LVec -> ( U e. A <-> E. x e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { x } ) ) ) |
| 85 |
83 84
|
syl |
|- ( ( ph /\ { .0. } C U ) -> ( U e. A <-> E. x e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { x } ) ) ) |
| 86 |
82 85
|
mpbird |
|- ( ( ph /\ { .0. } C U ) -> U e. A ) |
| 87 |
9 86
|
impbida |
|- ( ph -> ( U e. A <-> { .0. } C U ) ) |