Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcv0.o |
|- .0. = ( 0g ` W ) |
2 |
|
lsatcv0.a |
|- A = ( LSAtoms ` W ) |
3 |
|
lsatcv0.c |
|- C = (
|
4 |
|
lsatcv0.w |
|- ( ph -> W e. LVec ) |
5 |
|
lsatcv0.q |
|- ( ph -> Q e. A ) |
6 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
7 |
4 6
|
syl |
|- ( ph -> W e. LMod ) |
8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
9 |
8 2 7 5
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` W ) ) |
10 |
1 8
|
lss0ss |
|- ( ( W e. LMod /\ Q e. ( LSubSp ` W ) ) -> { .0. } C_ Q ) |
11 |
7 9 10
|
syl2anc |
|- ( ph -> { .0. } C_ Q ) |
12 |
1 2 7 5
|
lsatn0 |
|- ( ph -> Q =/= { .0. } ) |
13 |
12
|
necomd |
|- ( ph -> { .0. } =/= Q ) |
14 |
|
df-pss |
|- ( { .0. } C. Q <-> ( { .0. } C_ Q /\ { .0. } =/= Q ) ) |
15 |
11 13 14
|
sylanbrc |
|- ( ph -> { .0. } C. Q ) |
16 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
17 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
18 |
16 17 1 2
|
islsat |
|- ( W e. LMod -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
19 |
7 18
|
syl |
|- ( ph -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
20 |
5 19
|
mpbid |
|- ( ph -> E. x e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { x } ) ) |
21 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> W e. LVec ) |
22 |
|
eldifi |
|- ( x e. ( ( Base ` W ) \ { .0. } ) -> x e. ( Base ` W ) ) |
23 |
22
|
adantl |
|- ( ( ph /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> x e. ( Base ` W ) ) |
24 |
16 1 8 17 21 23
|
lspsncv0 |
|- ( ( ph /\ x e. ( ( Base ` W ) \ { .0. } ) ) -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) ) |
25 |
24
|
ex |
|- ( ph -> ( x e. ( ( Base ` W ) \ { .0. } ) -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) ) ) |
26 |
|
psseq2 |
|- ( Q = ( ( LSpan ` W ) ` { x } ) -> ( s C. Q <-> s C. ( ( LSpan ` W ) ` { x } ) ) ) |
27 |
26
|
anbi2d |
|- ( Q = ( ( LSpan ` W ) ` { x } ) -> ( ( { .0. } C. s /\ s C. Q ) <-> ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) ) ) |
28 |
27
|
rexbidv |
|- ( Q = ( ( LSpan ` W ) ` { x } ) -> ( E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) <-> E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) ) ) |
29 |
28
|
notbid |
|- ( Q = ( ( LSpan ` W ) ` { x } ) -> ( -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) <-> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) ) ) |
30 |
29
|
biimprcd |
|- ( -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. ( ( LSpan ` W ) ` { x } ) ) -> ( Q = ( ( LSpan ` W ) ` { x } ) -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) ) ) |
31 |
25 30
|
syl6 |
|- ( ph -> ( x e. ( ( Base ` W ) \ { .0. } ) -> ( Q = ( ( LSpan ` W ) ` { x } ) -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) ) ) ) |
32 |
31
|
rexlimdv |
|- ( ph -> ( E. x e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { x } ) -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) ) ) |
33 |
20 32
|
mpd |
|- ( ph -> -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) ) |
34 |
1 8
|
lsssn0 |
|- ( W e. LMod -> { .0. } e. ( LSubSp ` W ) ) |
35 |
7 34
|
syl |
|- ( ph -> { .0. } e. ( LSubSp ` W ) ) |
36 |
8 3 4 35 9
|
lcvbr |
|- ( ph -> ( { .0. } C Q <-> ( { .0. } C. Q /\ -. E. s e. ( LSubSp ` W ) ( { .0. } C. s /\ s C. Q ) ) ) ) |
37 |
15 33 36
|
mpbir2and |
|- ( ph -> { .0. } C Q ) |