| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcveq0.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsatcveq0.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lsatcveq0.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lsatcveq0.c |
|- C = (
|
| 5 |
|
lsatcveq0.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lsatcveq0.u |
|- ( ph -> U e. S ) |
| 7 |
|
lsatcveq0.q |
|- ( ph -> Q e. A ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ U C Q ) -> W e. LVec ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ U C Q ) -> U e. S ) |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
5 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
2 3 11 7
|
lsatlssel |
|- ( ph -> Q e. S ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ U C Q ) -> Q e. S ) |
| 14 |
|
simpr |
|- ( ( ph /\ U C Q ) -> U C Q ) |
| 15 |
2 4 8 9 13 14
|
lcvpss |
|- ( ( ph /\ U C Q ) -> U C. Q ) |
| 16 |
15
|
ex |
|- ( ph -> ( U C Q -> U C. Q ) ) |
| 17 |
1 3 4 5 7
|
lsatcv0 |
|- ( ph -> { .0. } C Q ) |
| 18 |
5
|
3ad2ant1 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> W e. LVec ) |
| 19 |
1 2
|
lsssn0 |
|- ( W e. LMod -> { .0. } e. S ) |
| 20 |
11 19
|
syl |
|- ( ph -> { .0. } e. S ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> { .0. } e. S ) |
| 22 |
12
|
3ad2ant1 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> Q e. S ) |
| 23 |
6
|
3ad2ant1 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> U e. S ) |
| 24 |
|
simp2 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> { .0. } C Q ) |
| 25 |
1 2
|
lss0ss |
|- ( ( W e. LMod /\ U e. S ) -> { .0. } C_ U ) |
| 26 |
11 6 25
|
syl2anc |
|- ( ph -> { .0. } C_ U ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> { .0. } C_ U ) |
| 28 |
|
simp3 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> U C. Q ) |
| 29 |
2 4 18 21 22 23 24 27 28
|
lcvnbtwn3 |
|- ( ( ph /\ { .0. } C Q /\ U C. Q ) -> U = { .0. } ) |
| 30 |
29
|
3exp |
|- ( ph -> ( { .0. } C Q -> ( U C. Q -> U = { .0. } ) ) ) |
| 31 |
17 30
|
mpd |
|- ( ph -> ( U C. Q -> U = { .0. } ) ) |
| 32 |
16 31
|
syld |
|- ( ph -> ( U C Q -> U = { .0. } ) ) |
| 33 |
|
breq1 |
|- ( U = { .0. } -> ( U C Q <-> { .0. } C Q ) ) |
| 34 |
17 33
|
syl5ibrcom |
|- ( ph -> ( U = { .0. } -> U C Q ) ) |
| 35 |
32 34
|
impbid |
|- ( ph -> ( U C Q <-> U = { .0. } ) ) |