| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcveq0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsatcveq0.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsatcveq0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 4 |
|
lsatcveq0.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 5 |
|
lsatcveq0.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lsatcveq0.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lsatcveq0.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 𝑄 ) → 𝑊 ∈ LVec ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 𝑄 ) → 𝑈 ∈ 𝑆 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
2 3 11 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 𝑄 ) → 𝑄 ∈ 𝑆 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 𝑄 ) → 𝑈 𝐶 𝑄 ) |
| 15 |
2 4 8 9 13 14
|
lcvpss |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 𝑄 ) → 𝑈 ⊊ 𝑄 ) |
| 16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑈 𝐶 𝑄 → 𝑈 ⊊ 𝑄 ) ) |
| 17 |
1 3 4 5 7
|
lsatcv0 |
⊢ ( 𝜑 → { 0 } 𝐶 𝑄 ) |
| 18 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → 𝑊 ∈ LVec ) |
| 19 |
1 2
|
lsssn0 |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |
| 20 |
11 19
|
syl |
⊢ ( 𝜑 → { 0 } ∈ 𝑆 ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → { 0 } ∈ 𝑆 ) |
| 22 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → 𝑄 ∈ 𝑆 ) |
| 23 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → 𝑈 ∈ 𝑆 ) |
| 24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → { 0 } 𝐶 𝑄 ) |
| 25 |
1 2
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → { 0 } ⊆ 𝑈 ) |
| 26 |
11 6 25
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ 𝑈 ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → { 0 } ⊆ 𝑈 ) |
| 28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → 𝑈 ⊊ 𝑄 ) |
| 29 |
2 4 18 21 22 23 24 27 28
|
lcvnbtwn3 |
⊢ ( ( 𝜑 ∧ { 0 } 𝐶 𝑄 ∧ 𝑈 ⊊ 𝑄 ) → 𝑈 = { 0 } ) |
| 30 |
29
|
3exp |
⊢ ( 𝜑 → ( { 0 } 𝐶 𝑄 → ( 𝑈 ⊊ 𝑄 → 𝑈 = { 0 } ) ) ) |
| 31 |
17 30
|
mpd |
⊢ ( 𝜑 → ( 𝑈 ⊊ 𝑄 → 𝑈 = { 0 } ) ) |
| 32 |
16 31
|
syld |
⊢ ( 𝜑 → ( 𝑈 𝐶 𝑄 → 𝑈 = { 0 } ) ) |
| 33 |
|
breq1 |
⊢ ( 𝑈 = { 0 } → ( 𝑈 𝐶 𝑄 ↔ { 0 } 𝐶 𝑄 ) ) |
| 34 |
17 33
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑈 = { 0 } → 𝑈 𝐶 𝑄 ) ) |
| 35 |
32 34
|
impbid |
⊢ ( 𝜑 → ( 𝑈 𝐶 𝑄 ↔ 𝑈 = { 0 } ) ) |