Metamath Proof Explorer


Theorem lcvexchlem1

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s
|- S = ( LSubSp ` W )
lcvexch.p
|- .(+) = ( LSSum ` W )
lcvexch.c
|- C = ( 
    lcvexch.w
    |- ( ph -> W e. LMod )
    lcvexch.t
    |- ( ph -> T e. S )
    lcvexch.u
    |- ( ph -> U e. S )
    Assertion lcvexchlem1
    |- ( ph -> ( T C. ( T .(+) U ) <-> ( T i^i U ) C. U ) )

    Proof

    Step Hyp Ref Expression
    1 lcvexch.s
     |-  S = ( LSubSp ` W )
    2 lcvexch.p
     |-  .(+) = ( LSSum ` W )
    3 lcvexch.c
     |-  C = ( 
      4 lcvexch.w
       |-  ( ph -> W e. LMod )
      5 lcvexch.t
       |-  ( ph -> T e. S )
      6 lcvexch.u
       |-  ( ph -> U e. S )
      7 1 lsssssubg
       |-  ( W e. LMod -> S C_ ( SubGrp ` W ) )
      8 4 7 syl
       |-  ( ph -> S C_ ( SubGrp ` W ) )
      9 8 5 sseldd
       |-  ( ph -> T e. ( SubGrp ` W ) )
      10 8 6 sseldd
       |-  ( ph -> U e. ( SubGrp ` W ) )
      11 2 lsmub1
       |-  ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> T C_ ( T .(+) U ) )
      12 9 10 11 syl2anc
       |-  ( ph -> T C_ ( T .(+) U ) )
      13 inss2
       |-  ( T i^i U ) C_ U
      14 13 a1i
       |-  ( ph -> ( T i^i U ) C_ U )
      15 12 14 2thd
       |-  ( ph -> ( T C_ ( T .(+) U ) <-> ( T i^i U ) C_ U ) )
      16 2 lsmss2b
       |-  ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( U C_ T <-> ( T .(+) U ) = T ) )
      17 9 10 16 syl2anc
       |-  ( ph -> ( U C_ T <-> ( T .(+) U ) = T ) )
      18 eqcom
       |-  ( ( T .(+) U ) = T <-> T = ( T .(+) U ) )
      19 17 18 bitrdi
       |-  ( ph -> ( U C_ T <-> T = ( T .(+) U ) ) )
      20 sseqin2
       |-  ( U C_ T <-> ( T i^i U ) = U )
      21 19 20 bitr3di
       |-  ( ph -> ( T = ( T .(+) U ) <-> ( T i^i U ) = U ) )
      22 21 necon3bid
       |-  ( ph -> ( T =/= ( T .(+) U ) <-> ( T i^i U ) =/= U ) )
      23 15 22 anbi12d
       |-  ( ph -> ( ( T C_ ( T .(+) U ) /\ T =/= ( T .(+) U ) ) <-> ( ( T i^i U ) C_ U /\ ( T i^i U ) =/= U ) ) )
      24 df-pss
       |-  ( T C. ( T .(+) U ) <-> ( T C_ ( T .(+) U ) /\ T =/= ( T .(+) U ) ) )
      25 df-pss
       |-  ( ( T i^i U ) C. U <-> ( ( T i^i U ) C_ U /\ ( T i^i U ) =/= U ) )
      26 23 24 25 3bitr4g
       |-  ( ph -> ( T C. ( T .(+) U ) <-> ( T i^i U ) C. U ) )