| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lcvexch.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lcvexch.c |
|- C = (
|
| 4 |
|
lcvexch.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lcvexch.t |
|- ( ph -> T e. S ) |
| 6 |
|
lcvexch.u |
|- ( ph -> U e. S ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ ( T i^i U ) C U ) -> W e. LMod ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ ( T i^i U ) C U ) -> T e. S ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ ( T i^i U ) C U ) -> U e. S ) |
| 10 |
|
simpr |
|- ( ( ph /\ ( T i^i U ) C U ) -> ( T i^i U ) C U ) |
| 11 |
1 2 3 7 8 9 10
|
lcvexchlem5 |
|- ( ( ph /\ ( T i^i U ) C U ) -> T C ( T .(+) U ) ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ T C ( T .(+) U ) ) -> W e. LMod ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ T C ( T .(+) U ) ) -> T e. S ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ T C ( T .(+) U ) ) -> U e. S ) |
| 15 |
|
simpr |
|- ( ( ph /\ T C ( T .(+) U ) ) -> T C ( T .(+) U ) ) |
| 16 |
1 2 3 12 13 14 15
|
lcvexchlem4 |
|- ( ( ph /\ T C ( T .(+) U ) ) -> ( T i^i U ) C U ) |
| 17 |
11 16
|
impbida |
|- ( ph -> ( ( T i^i U ) C U <-> T C ( T .(+) U ) ) ) |