| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lcvexch.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lcvexch.c |
|- C = (
|
| 4 |
|
lcvexch.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lcvexch.t |
|- ( ph -> T e. S ) |
| 6 |
|
lcvexch.u |
|- ( ph -> U e. S ) |
| 7 |
|
lcvexch.g |
|- ( ph -> ( T i^i U ) C U ) |
| 8 |
1
|
lssincl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S ) |
| 9 |
4 5 6 8
|
syl3anc |
|- ( ph -> ( T i^i U ) e. S ) |
| 10 |
1 3 4 9 6 7
|
lcvpss |
|- ( ph -> ( T i^i U ) C. U ) |
| 11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|- ( ph -> ( T C. ( T .(+) U ) <-> ( T i^i U ) C. U ) ) |
| 12 |
10 11
|
mpbird |
|- ( ph -> T C. ( T .(+) U ) ) |
| 13 |
|
simp3l |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> T C_ s ) |
| 14 |
13
|
ssrind |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( T i^i U ) C_ ( s i^i U ) ) |
| 15 |
|
inss2 |
|- ( s i^i U ) C_ U |
| 16 |
14 15
|
jctir |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) ) |
| 17 |
7
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( T i^i U ) C U ) |
| 18 |
1 3 4 9 6
|
lcvbr3 |
|- ( ph -> ( ( T i^i U ) C U <-> ( ( T i^i U ) C. U /\ A. r e. S ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) ) ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ s e. S ) -> ( ( T i^i U ) C U <-> ( ( T i^i U ) C. U /\ A. r e. S ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) ) ) ) |
| 20 |
4
|
adantr |
|- ( ( ph /\ s e. S ) -> W e. LMod ) |
| 21 |
|
simpr |
|- ( ( ph /\ s e. S ) -> s e. S ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ s e. S ) -> U e. S ) |
| 23 |
1
|
lssincl |
|- ( ( W e. LMod /\ s e. S /\ U e. S ) -> ( s i^i U ) e. S ) |
| 24 |
20 21 22 23
|
syl3anc |
|- ( ( ph /\ s e. S ) -> ( s i^i U ) e. S ) |
| 25 |
|
sseq2 |
|- ( r = ( s i^i U ) -> ( ( T i^i U ) C_ r <-> ( T i^i U ) C_ ( s i^i U ) ) ) |
| 26 |
|
sseq1 |
|- ( r = ( s i^i U ) -> ( r C_ U <-> ( s i^i U ) C_ U ) ) |
| 27 |
25 26
|
anbi12d |
|- ( r = ( s i^i U ) -> ( ( ( T i^i U ) C_ r /\ r C_ U ) <-> ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) ) ) |
| 28 |
|
eqeq1 |
|- ( r = ( s i^i U ) -> ( r = ( T i^i U ) <-> ( s i^i U ) = ( T i^i U ) ) ) |
| 29 |
|
eqeq1 |
|- ( r = ( s i^i U ) -> ( r = U <-> ( s i^i U ) = U ) ) |
| 30 |
28 29
|
orbi12d |
|- ( r = ( s i^i U ) -> ( ( r = ( T i^i U ) \/ r = U ) <-> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) |
| 31 |
27 30
|
imbi12d |
|- ( r = ( s i^i U ) -> ( ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) <-> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 32 |
31
|
rspcv |
|- ( ( s i^i U ) e. S -> ( A. r e. S ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 33 |
24 32
|
syl |
|- ( ( ph /\ s e. S ) -> ( A. r e. S ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 34 |
33
|
adantld |
|- ( ( ph /\ s e. S ) -> ( ( ( T i^i U ) C. U /\ A. r e. S ( ( ( T i^i U ) C_ r /\ r C_ U ) -> ( r = ( T i^i U ) \/ r = U ) ) ) -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 35 |
19 34
|
sylbid |
|- ( ( ph /\ s e. S ) -> ( ( T i^i U ) C U -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 36 |
35
|
3adant3 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( T i^i U ) C U -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) ) |
| 37 |
17 36
|
mpd |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( ( T i^i U ) C_ ( s i^i U ) /\ ( s i^i U ) C_ U ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) ) |
| 38 |
16 37
|
mpd |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) ) |
| 39 |
|
oveq1 |
|- ( ( s i^i U ) = ( T i^i U ) -> ( ( s i^i U ) .(+) T ) = ( ( T i^i U ) .(+) T ) ) |
| 40 |
4
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> W e. LMod ) |
| 41 |
5
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> T e. S ) |
| 42 |
6
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> U e. S ) |
| 43 |
|
simp2 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> s e. S ) |
| 44 |
|
simp3r |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> s C_ ( T .(+) U ) ) |
| 45 |
1 2 3 40 41 42 43 13 44
|
lcvexchlem3 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( s i^i U ) .(+) T ) = s ) |
| 46 |
1
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 47 |
4 46
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
| 48 |
47 9
|
sseldd |
|- ( ph -> ( T i^i U ) e. ( SubGrp ` W ) ) |
| 49 |
47 5
|
sseldd |
|- ( ph -> T e. ( SubGrp ` W ) ) |
| 50 |
|
inss1 |
|- ( T i^i U ) C_ T |
| 51 |
50
|
a1i |
|- ( ph -> ( T i^i U ) C_ T ) |
| 52 |
2
|
lsmss1 |
|- ( ( ( T i^i U ) e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) /\ ( T i^i U ) C_ T ) -> ( ( T i^i U ) .(+) T ) = T ) |
| 53 |
48 49 51 52
|
syl3anc |
|- ( ph -> ( ( T i^i U ) .(+) T ) = T ) |
| 54 |
53
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( T i^i U ) .(+) T ) = T ) |
| 55 |
45 54
|
eqeq12d |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( ( s i^i U ) .(+) T ) = ( ( T i^i U ) .(+) T ) <-> s = T ) ) |
| 56 |
39 55
|
imbitrid |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( s i^i U ) = ( T i^i U ) -> s = T ) ) |
| 57 |
|
oveq1 |
|- ( ( s i^i U ) = U -> ( ( s i^i U ) .(+) T ) = ( U .(+) T ) ) |
| 58 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 59 |
4 58
|
syl |
|- ( ph -> W e. Abel ) |
| 60 |
47 6
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 61 |
2
|
lsmcom |
|- ( ( W e. Abel /\ U e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) ) -> ( U .(+) T ) = ( T .(+) U ) ) |
| 62 |
59 60 49 61
|
syl3anc |
|- ( ph -> ( U .(+) T ) = ( T .(+) U ) ) |
| 63 |
62
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( U .(+) T ) = ( T .(+) U ) ) |
| 64 |
45 63
|
eqeq12d |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( ( s i^i U ) .(+) T ) = ( U .(+) T ) <-> s = ( T .(+) U ) ) ) |
| 65 |
57 64
|
imbitrid |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( s i^i U ) = U -> s = ( T .(+) U ) ) ) |
| 66 |
56 65
|
orim12d |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( ( ( s i^i U ) = ( T i^i U ) \/ ( s i^i U ) = U ) -> ( s = T \/ s = ( T .(+) U ) ) ) ) |
| 67 |
38 66
|
mpd |
|- ( ( ph /\ s e. S /\ ( T C_ s /\ s C_ ( T .(+) U ) ) ) -> ( s = T \/ s = ( T .(+) U ) ) ) |
| 68 |
67
|
3exp |
|- ( ph -> ( s e. S -> ( ( T C_ s /\ s C_ ( T .(+) U ) ) -> ( s = T \/ s = ( T .(+) U ) ) ) ) ) |
| 69 |
68
|
ralrimiv |
|- ( ph -> A. s e. S ( ( T C_ s /\ s C_ ( T .(+) U ) ) -> ( s = T \/ s = ( T .(+) U ) ) ) ) |
| 70 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |
| 71 |
4 5 6 70
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. S ) |
| 72 |
1 3 4 5 71
|
lcvbr3 |
|- ( ph -> ( T C ( T .(+) U ) <-> ( T C. ( T .(+) U ) /\ A. s e. S ( ( T C_ s /\ s C_ ( T .(+) U ) ) -> ( s = T \/ s = ( T .(+) U ) ) ) ) ) ) |
| 73 |
12 69 72
|
mpbir2and |
|- ( ph -> T C ( T .(+) U ) ) |