Step |
Hyp |
Ref |
Expression |
1 |
|
lcvfbr.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvfbr.c |
|- C = (
|
3 |
|
lcvfbr.w |
|- ( ph -> W e. X ) |
4 |
|
lcvfbr.t |
|- ( ph -> T e. S ) |
5 |
|
lcvfbr.u |
|- ( ph -> U e. S ) |
6 |
1 2 3 4 5
|
lcvbr |
|- ( ph -> ( T C U <-> ( T C. U /\ -. E. s e. S ( T C. s /\ s C. U ) ) ) ) |
7 |
|
iman |
|- ( ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) <-> -. ( ( T C_ s /\ s C_ U ) /\ -. ( s = T \/ s = U ) ) ) |
8 |
|
df-pss |
|- ( T C. s <-> ( T C_ s /\ T =/= s ) ) |
9 |
|
necom |
|- ( T =/= s <-> s =/= T ) |
10 |
9
|
anbi2i |
|- ( ( T C_ s /\ T =/= s ) <-> ( T C_ s /\ s =/= T ) ) |
11 |
8 10
|
bitri |
|- ( T C. s <-> ( T C_ s /\ s =/= T ) ) |
12 |
|
df-pss |
|- ( s C. U <-> ( s C_ U /\ s =/= U ) ) |
13 |
11 12
|
anbi12i |
|- ( ( T C. s /\ s C. U ) <-> ( ( T C_ s /\ s =/= T ) /\ ( s C_ U /\ s =/= U ) ) ) |
14 |
|
an4 |
|- ( ( ( T C_ s /\ s =/= T ) /\ ( s C_ U /\ s =/= U ) ) <-> ( ( T C_ s /\ s C_ U ) /\ ( s =/= T /\ s =/= U ) ) ) |
15 |
|
neanior |
|- ( ( s =/= T /\ s =/= U ) <-> -. ( s = T \/ s = U ) ) |
16 |
15
|
anbi2i |
|- ( ( ( T C_ s /\ s C_ U ) /\ ( s =/= T /\ s =/= U ) ) <-> ( ( T C_ s /\ s C_ U ) /\ -. ( s = T \/ s = U ) ) ) |
17 |
14 16
|
bitri |
|- ( ( ( T C_ s /\ s =/= T ) /\ ( s C_ U /\ s =/= U ) ) <-> ( ( T C_ s /\ s C_ U ) /\ -. ( s = T \/ s = U ) ) ) |
18 |
13 17
|
bitri |
|- ( ( T C. s /\ s C. U ) <-> ( ( T C_ s /\ s C_ U ) /\ -. ( s = T \/ s = U ) ) ) |
19 |
7 18
|
xchbinxr |
|- ( ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) <-> -. ( T C. s /\ s C. U ) ) |
20 |
19
|
ralbii |
|- ( A. s e. S ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) <-> A. s e. S -. ( T C. s /\ s C. U ) ) |
21 |
|
ralnex |
|- ( A. s e. S -. ( T C. s /\ s C. U ) <-> -. E. s e. S ( T C. s /\ s C. U ) ) |
22 |
20 21
|
bitri |
|- ( A. s e. S ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) <-> -. E. s e. S ( T C. s /\ s C. U ) ) |
23 |
22
|
anbi2i |
|- ( ( T C. U /\ A. s e. S ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) ) <-> ( T C. U /\ -. E. s e. S ( T C. s /\ s C. U ) ) ) |
24 |
6 23
|
bitr4di |
|- ( ph -> ( T C U <-> ( T C. U /\ A. s e. S ( ( T C_ s /\ s C_ U ) -> ( s = T \/ s = U ) ) ) ) ) |