Metamath Proof Explorer


Theorem lcvbr3

Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S=LSubSpW
lcvfbr.c C=LW
lcvfbr.w φWX
lcvfbr.t φTS
lcvfbr.u φUS
Assertion lcvbr3 φTCUTUsSTssUs=Ts=U

Proof

Step Hyp Ref Expression
1 lcvfbr.s S=LSubSpW
2 lcvfbr.c C=LW
3 lcvfbr.w φWX
4 lcvfbr.t φTS
5 lcvfbr.u φUS
6 1 2 3 4 5 lcvbr φTCUTU¬sSTssU
7 iman TssUs=Ts=U¬TssU¬s=Ts=U
8 df-pss TsTsTs
9 necom TssT
10 9 anbi2i TsTsTssT
11 8 10 bitri TsTssT
12 df-pss sUsUsU
13 11 12 anbi12i TssUTssTsUsU
14 an4 TssTsUsUTssUsTsU
15 neanior sTsU¬s=Ts=U
16 15 anbi2i TssUsTsUTssU¬s=Ts=U
17 14 16 bitri TssTsUsUTssU¬s=Ts=U
18 13 17 bitri TssUTssU¬s=Ts=U
19 7 18 xchbinxr TssUs=Ts=U¬TssU
20 19 ralbii sSTssUs=Ts=UsS¬TssU
21 ralnex sS¬TssU¬sSTssU
22 20 21 bitri sSTssUs=Ts=U¬sSTssU
23 22 anbi2i TUsSTssUs=Ts=UTU¬sSTssU
24 6 23 bitr4di φTCUTUsSTssUs=Ts=U