Metamath Proof Explorer


Theorem lcvbr3

Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvfbr.c 𝐶 = ( ⋖L𝑊 )
lcvfbr.w ( 𝜑𝑊𝑋 )
lcvfbr.t ( 𝜑𝑇𝑆 )
lcvfbr.u ( 𝜑𝑈𝑆 )
Assertion lcvbr3 ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ∀ 𝑠𝑆 ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lcvfbr.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvfbr.c 𝐶 = ( ⋖L𝑊 )
3 lcvfbr.w ( 𝜑𝑊𝑋 )
4 lcvfbr.t ( 𝜑𝑇𝑆 )
5 lcvfbr.u ( 𝜑𝑈𝑆 )
6 1 2 3 4 5 lcvbr ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) ) )
7 iman ( ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ↔ ¬ ( ( 𝑇𝑠𝑠𝑈 ) ∧ ¬ ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) )
8 df-pss ( 𝑇𝑠 ↔ ( 𝑇𝑠𝑇𝑠 ) )
9 necom ( 𝑇𝑠𝑠𝑇 )
10 9 anbi2i ( ( 𝑇𝑠𝑇𝑠 ) ↔ ( 𝑇𝑠𝑠𝑇 ) )
11 8 10 bitri ( 𝑇𝑠 ↔ ( 𝑇𝑠𝑠𝑇 ) )
12 df-pss ( 𝑠𝑈 ↔ ( 𝑠𝑈𝑠𝑈 ) )
13 11 12 anbi12i ( ( 𝑇𝑠𝑠𝑈 ) ↔ ( ( 𝑇𝑠𝑠𝑇 ) ∧ ( 𝑠𝑈𝑠𝑈 ) ) )
14 an4 ( ( ( 𝑇𝑠𝑠𝑇 ) ∧ ( 𝑠𝑈𝑠𝑈 ) ) ↔ ( ( 𝑇𝑠𝑠𝑈 ) ∧ ( 𝑠𝑇𝑠𝑈 ) ) )
15 neanior ( ( 𝑠𝑇𝑠𝑈 ) ↔ ¬ ( 𝑠 = 𝑇𝑠 = 𝑈 ) )
16 15 anbi2i ( ( ( 𝑇𝑠𝑠𝑈 ) ∧ ( 𝑠𝑇𝑠𝑈 ) ) ↔ ( ( 𝑇𝑠𝑠𝑈 ) ∧ ¬ ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) )
17 14 16 bitri ( ( ( 𝑇𝑠𝑠𝑇 ) ∧ ( 𝑠𝑈𝑠𝑈 ) ) ↔ ( ( 𝑇𝑠𝑠𝑈 ) ∧ ¬ ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) )
18 13 17 bitri ( ( 𝑇𝑠𝑠𝑈 ) ↔ ( ( 𝑇𝑠𝑠𝑈 ) ∧ ¬ ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) )
19 7 18 xchbinxr ( ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ↔ ¬ ( 𝑇𝑠𝑠𝑈 ) )
20 19 ralbii ( ∀ 𝑠𝑆 ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ↔ ∀ 𝑠𝑆 ¬ ( 𝑇𝑠𝑠𝑈 ) )
21 ralnex ( ∀ 𝑠𝑆 ¬ ( 𝑇𝑠𝑠𝑈 ) ↔ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) )
22 20 21 bitri ( ∀ 𝑠𝑆 ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ↔ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) )
23 22 anbi2i ( ( 𝑇𝑈 ∧ ∀ 𝑠𝑆 ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ) ↔ ( 𝑇𝑈 ∧ ¬ ∃ 𝑠𝑆 ( 𝑇𝑠𝑠𝑈 ) ) )
24 6 23 bitr4di ( 𝜑 → ( 𝑇 𝐶 𝑈 ↔ ( 𝑇𝑈 ∧ ∀ 𝑠𝑆 ( ( 𝑇𝑠𝑠𝑈 ) → ( 𝑠 = 𝑇𝑠 = 𝑈 ) ) ) ) )