Step |
Hyp |
Ref |
Expression |
1 |
|
lcvexch.s |
|
2 |
|
lcvexch.p |
|
3 |
|
lcvexch.c |
|
4 |
|
lcvexch.w |
|
5 |
|
lcvexch.t |
|
6 |
|
lcvexch.u |
|
7 |
|
lcvexch.g |
|
8 |
1
|
lssincl |
|
9 |
4 5 6 8
|
syl3anc |
|
10 |
1 3 4 9 6 7
|
lcvpss |
|
11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|
12 |
10 11
|
mpbird |
|
13 |
|
simp3l |
|
14 |
13
|
ssrind |
|
15 |
|
inss2 |
|
16 |
14 15
|
jctir |
|
17 |
7
|
3ad2ant1 |
|
18 |
1 3 4 9 6
|
lcvbr3 |
|
19 |
18
|
adantr |
|
20 |
4
|
adantr |
|
21 |
|
simpr |
|
22 |
6
|
adantr |
|
23 |
1
|
lssincl |
|
24 |
20 21 22 23
|
syl3anc |
|
25 |
|
sseq2 |
|
26 |
|
sseq1 |
|
27 |
25 26
|
anbi12d |
|
28 |
|
eqeq1 |
|
29 |
|
eqeq1 |
|
30 |
28 29
|
orbi12d |
|
31 |
27 30
|
imbi12d |
|
32 |
31
|
rspcv |
|
33 |
24 32
|
syl |
|
34 |
33
|
adantld |
|
35 |
19 34
|
sylbid |
|
36 |
35
|
3adant3 |
|
37 |
17 36
|
mpd |
|
38 |
16 37
|
mpd |
|
39 |
|
oveq1 |
|
40 |
4
|
3ad2ant1 |
|
41 |
5
|
3ad2ant1 |
|
42 |
6
|
3ad2ant1 |
|
43 |
|
simp2 |
|
44 |
|
simp3r |
|
45 |
1 2 3 40 41 42 43 13 44
|
lcvexchlem3 |
|
46 |
1
|
lsssssubg |
|
47 |
4 46
|
syl |
|
48 |
47 9
|
sseldd |
|
49 |
47 5
|
sseldd |
|
50 |
|
inss1 |
|
51 |
50
|
a1i |
|
52 |
2
|
lsmss1 |
|
53 |
48 49 51 52
|
syl3anc |
|
54 |
53
|
3ad2ant1 |
|
55 |
45 54
|
eqeq12d |
|
56 |
39 55
|
syl5ib |
|
57 |
|
oveq1 |
|
58 |
|
lmodabl |
|
59 |
4 58
|
syl |
|
60 |
47 6
|
sseldd |
|
61 |
2
|
lsmcom |
|
62 |
59 60 49 61
|
syl3anc |
|
63 |
62
|
3ad2ant1 |
|
64 |
45 63
|
eqeq12d |
|
65 |
57 64
|
syl5ib |
|
66 |
56 65
|
orim12d |
|
67 |
38 66
|
mpd |
|
68 |
67
|
3exp |
|
69 |
68
|
ralrimiv |
|
70 |
1 2
|
lsmcl |
|
71 |
4 5 6 70
|
syl3anc |
|
72 |
1 3 4 5 71
|
lcvbr3 |
|
73 |
12 69 72
|
mpbir2and |
|