Metamath Proof Explorer


Theorem lcvexchlem3

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S = LSubSp W
lcvexch.p ˙ = LSSum W
lcvexch.c C = L W
lcvexch.w φ W LMod
lcvexch.t φ T S
lcvexch.u φ U S
lcvexch.q φ R S
lcvexch.d φ T R
lcvexch.e φ R T ˙ U
Assertion lcvexchlem3 φ R U ˙ T = R

Proof

Step Hyp Ref Expression
1 lcvexch.s S = LSubSp W
2 lcvexch.p ˙ = LSSum W
3 lcvexch.c C = L W
4 lcvexch.w φ W LMod
5 lcvexch.t φ T S
6 lcvexch.u φ U S
7 lcvexch.q φ R S
8 lcvexch.d φ T R
9 lcvexch.e φ R T ˙ U
10 1 lsssssubg W LMod S SubGrp W
11 4 10 syl φ S SubGrp W
12 11 7 sseldd φ R SubGrp W
13 11 6 sseldd φ U SubGrp W
14 11 5 sseldd φ T SubGrp W
15 2 lsmmod2 R SubGrp W U SubGrp W T SubGrp W T R R U ˙ T = R U ˙ T
16 12 13 14 8 15 syl31anc φ R U ˙ T = R U ˙ T
17 lmodabl W LMod W Abel
18 4 17 syl φ W Abel
19 2 lsmcom W Abel T SubGrp W U SubGrp W T ˙ U = U ˙ T
20 18 14 13 19 syl3anc φ T ˙ U = U ˙ T
21 9 20 sseqtrd φ R U ˙ T
22 df-ss R U ˙ T R U ˙ T = R
23 21 22 sylib φ R U ˙ T = R
24 16 23 eqtr3d φ R U ˙ T = R