Metamath Proof Explorer


Theorem lcvexch

Description: Subspaces satisfy the exchange axiom. Lemma 7.5 of MaedaMaeda p. 31. ( cvexchi analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S = LSubSp W
lcvexch.p ˙ = LSSum W
lcvexch.c C = L W
lcvexch.w φ W LMod
lcvexch.t φ T S
lcvexch.u φ U S
Assertion lcvexch φ T U C U T C T ˙ U

Proof

Step Hyp Ref Expression
1 lcvexch.s S = LSubSp W
2 lcvexch.p ˙ = LSSum W
3 lcvexch.c C = L W
4 lcvexch.w φ W LMod
5 lcvexch.t φ T S
6 lcvexch.u φ U S
7 4 adantr φ T U C U W LMod
8 5 adantr φ T U C U T S
9 6 adantr φ T U C U U S
10 simpr φ T U C U T U C U
11 1 2 3 7 8 9 10 lcvexchlem5 φ T U C U T C T ˙ U
12 4 adantr φ T C T ˙ U W LMod
13 5 adantr φ T C T ˙ U T S
14 6 adantr φ T C T ˙ U U S
15 simpr φ T C T ˙ U T C T ˙ U
16 1 2 3 12 13 14 15 lcvexchlem4 φ T C T ˙ U T U C U
17 11 16 impbida φ T U C U T C T ˙ U