Metamath Proof Explorer


Theorem cvexchi

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion cvexchi A B B A A B

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 1 2 cvexchlem A B B A A B
4 2 choccli B C
5 1 choccli A C
6 4 5 cvexchlem B A A B B A
7 1 2 chdmj1i A B = A B
8 incom A B = B A
9 7 8 eqtri A B = B A
10 9 breq1i A B A B A A
11 1 2 chdmm1i A B = A B
12 5 4 chjcomi A B = B A
13 11 12 eqtri A B = B A
14 13 breq2i B A B B B A
15 6 10 14 3imtr4i A B A B A B
16 1 2 chjcli A B C
17 cvcon3 A C A B C A A B A B A
18 1 16 17 mp2an A A B A B A
19 1 2 chincli A B C
20 cvcon3 A B C B C A B B B A B
21 19 2 20 mp2an A B B B A B
22 15 18 21 3imtr4i A A B A B B
23 3 22 impbii A B B A A B