Metamath Proof Explorer


Theorem cvexchi

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion cvexchi ABBAAB

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 1 2 cvexchlem ABBAAB
4 2 choccli BC
5 1 choccli AC
6 4 5 cvexchlem BAABBA
7 1 2 chdmj1i AB=AB
8 incom AB=BA
9 7 8 eqtri AB=BA
10 9 breq1i ABABAA
11 1 2 chdmm1i AB=AB
12 5 4 chjcomi AB=BA
13 11 12 eqtri AB=BA
14 13 breq2i BABBBA
15 6 10 14 3imtr4i ABABAB
16 1 2 chjcli ABC
17 cvcon3 ACABCAABABA
18 1 16 17 mp2an AABABA
19 1 2 chincli ABC
20 cvcon3 ABCBCABBBAB
21 19 2 20 mp2an ABBBAB
22 15 18 21 3imtr4i AABABB
23 3 22 impbii ABBAAB