| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpssat.1 |
|- A e. CH |
| 2 |
|
chpssat.2 |
|- B e. CH |
| 3 |
1 2
|
cvexchlem |
|- ( ( A i^i B ) A |
| 4 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 5 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 6 |
4 5
|
cvexchlem |
|- ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) ( _|_ ` B ) |
| 7 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 8 |
|
incom |
|- ( ( _|_ ` A ) i^i ( _|_ ` B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 9 |
7 8
|
eqtri |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 10 |
9
|
breq1i |
|- ( ( _|_ ` ( A vH B ) ) ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
| 11 |
1 2
|
chdmm1i |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 12 |
5 4
|
chjcomi |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) = ( ( _|_ ` B ) vH ( _|_ ` A ) ) |
| 13 |
11 12
|
eqtri |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` B ) vH ( _|_ ` A ) ) |
| 14 |
13
|
breq2i |
|- ( ( _|_ ` B ) ( _|_ ` B ) |
| 15 |
6 10 14
|
3imtr4i |
|- ( ( _|_ ` ( A vH B ) ) ( _|_ ` B ) |
| 16 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
| 17 |
|
cvcon3 |
|- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A ( _|_ ` ( A vH B ) ) |
| 18 |
1 16 17
|
mp2an |
|- ( A ( _|_ ` ( A vH B ) ) |
| 19 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 20 |
|
cvcon3 |
|- ( ( ( A i^i B ) e. CH /\ B e. CH ) -> ( ( A i^i B ) ( _|_ ` B ) |
| 21 |
19 2 20
|
mp2an |
|- ( ( A i^i B ) ( _|_ ` B ) |
| 22 |
15 18 21
|
3imtr4i |
|- ( A ( A i^i B ) |
| 23 |
3 22
|
impbii |
|- ( ( A i^i B ) A |