Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
1 2
|
cvexchlem |
|- ( ( A i^i B ) A |
4 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
5 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
6 |
4 5
|
cvexchlem |
|- ( ( ( _|_ ` B ) i^i ( _|_ ` A ) ) ( _|_ ` B ) |
7 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
8 |
|
incom |
|- ( ( _|_ ` A ) i^i ( _|_ ` B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
9 |
7 8
|
eqtri |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
10 |
9
|
breq1i |
|- ( ( _|_ ` ( A vH B ) ) ( ( _|_ ` B ) i^i ( _|_ ` A ) ) |
11 |
1 2
|
chdmm1i |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
12 |
5 4
|
chjcomi |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) = ( ( _|_ ` B ) vH ( _|_ ` A ) ) |
13 |
11 12
|
eqtri |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` B ) vH ( _|_ ` A ) ) |
14 |
13
|
breq2i |
|- ( ( _|_ ` B ) ( _|_ ` B ) |
15 |
6 10 14
|
3imtr4i |
|- ( ( _|_ ` ( A vH B ) ) ( _|_ ` B ) |
16 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
17 |
|
cvcon3 |
|- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A ( _|_ ` ( A vH B ) ) |
18 |
1 16 17
|
mp2an |
|- ( A ( _|_ ` ( A vH B ) ) |
19 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
20 |
|
cvcon3 |
|- ( ( ( A i^i B ) e. CH /\ B e. CH ) -> ( ( A i^i B ) ( _|_ ` B ) |
21 |
19 2 20
|
mp2an |
|- ( ( A i^i B ) ( _|_ ` B ) |
22 |
15 18 21
|
3imtr4i |
|- ( A ( A i^i B ) |
23 |
3 22
|
impbii |
|- ( ( A i^i B ) A |