Metamath Proof Explorer


Theorem chrelat2

Description: A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chrelat2 ACBC¬ABxHAtomsxA¬xB

Proof

Step Hyp Ref Expression
1 sseq1 A=ifACAABifACAB
2 1 notbid A=ifACA¬AB¬ifACAB
3 sseq2 A=ifACAxAxifACA
4 3 anbi1d A=ifACAxA¬xBxifACA¬xB
5 4 rexbidv A=ifACAxHAtomsxA¬xBxHAtomsxifACA¬xB
6 2 5 bibi12d A=ifACA¬ABxHAtomsxA¬xB¬ifACABxHAtomsxifACA¬xB
7 sseq2 B=ifBCBifACABifACAifBCB
8 7 notbid B=ifBCB¬ifACAB¬ifACAifBCB
9 sseq2 B=ifBCBxBxifBCB
10 9 notbid B=ifBCB¬xB¬xifBCB
11 10 anbi2d B=ifBCBxifACA¬xBxifACA¬xifBCB
12 11 rexbidv B=ifBCBxHAtomsxifACA¬xBxHAtomsxifACA¬xifBCB
13 8 12 bibi12d B=ifBCB¬ifACABxHAtomsxifACA¬xB¬ifACAifBCBxHAtomsxifACA¬xifBCB
14 ifchhv ifACAC
15 ifchhv ifBCBC
16 14 15 chrelat2i ¬ifACAifBCBxHAtomsxifACA¬xifBCB
17 6 13 16 dedth2h ACBC¬ABxHAtomsxA¬xB