| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvexch.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lcvexch.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 4 |
|
lcvexch.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lcvexch.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 6 |
|
lcvexch.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) → 𝑊 ∈ LMod ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) → 𝑇 ∈ 𝑆 ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) → ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) |
| 11 |
1 2 3 7 8 9 10
|
lcvexchlem5 |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) → 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) → 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) |
| 16 |
1 2 3 12 13 14 15
|
lcvexchlem4 |
⊢ ( ( 𝜑 ∧ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) |
| 17 |
11 16
|
impbida |
⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ↔ 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) ) |