| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvexch.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lcvexch.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 4 |
|
lcvexch.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lcvexch.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 6 |
|
lcvexch.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lcvexch.f |
⊢ ( 𝜑 → 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) |
| 8 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 9 |
4 5 6 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 10 |
1 3 4 5 9 7
|
lcvpss |
⊢ ( 𝜑 → 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ) |
| 11 |
1 2 3 4 5 6
|
lcvexchlem1 |
⊢ ( 𝜑 → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ∩ 𝑈 ) ⊊ 𝑈 ) ) |
| 12 |
10 11
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ⊊ 𝑈 ) |
| 13 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 14 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 16 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑠 ∈ 𝑆 ) |
| 17 |
15 16
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑠 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 18 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) |
| 19 |
15 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 20 |
2
|
lsmub2 |
⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ) |
| 22 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 23 |
15 22
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑠 ⊆ 𝑈 ) |
| 25 |
2
|
lsmless1 |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑠 ⊆ 𝑈 ) → ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑇 ) ) |
| 26 |
23 19 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑈 ⊕ 𝑇 ) ) |
| 27 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 29 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 30 |
29 5
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 |
29 6
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
2
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 33 |
28 30 31 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 35 |
26 34
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 36 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ) |
| 37 |
1 3 4 5 9
|
lcvbr3 |
⊢ ( 𝜑 → ( 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ∧ ∀ 𝑟 ∈ 𝑆 ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ∧ ∀ 𝑟 ∈ 𝑆 ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) ) |
| 39 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
| 41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → 𝑇 ∈ 𝑆 ) |
| 42 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝑆 ∧ 𝑇 ∈ 𝑆 ) → ( 𝑠 ⊕ 𝑇 ) ∈ 𝑆 ) |
| 43 |
39 40 41 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑠 ⊕ 𝑇 ) ∈ 𝑆 ) |
| 44 |
|
sseq2 |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( 𝑇 ⊆ 𝑟 ↔ 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ) ) |
| 45 |
|
sseq1 |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 46 |
44 45
|
anbi12d |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 47 |
|
eqeq1 |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( 𝑟 = 𝑇 ↔ ( 𝑠 ⊕ 𝑇 ) = 𝑇 ) ) |
| 48 |
|
eqeq1 |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( 𝑟 = ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) |
| 49 |
47 48
|
orbi12d |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ↔ ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 50 |
46 49
|
imbi12d |
⊢ ( 𝑟 = ( 𝑠 ⊕ 𝑇 ) → ( ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) ↔ ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 51 |
50
|
rspcv |
⊢ ( ( 𝑠 ⊕ 𝑇 ) ∈ 𝑆 → ( ∀ 𝑟 ∈ 𝑆 ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 52 |
43 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ∀ 𝑟 ∈ 𝑆 ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 53 |
52
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ∧ ∀ 𝑟 ∈ 𝑆 ( ( 𝑇 ⊆ 𝑟 ∧ 𝑟 ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑟 = 𝑇 ∨ 𝑟 = ( 𝑇 ⊕ 𝑈 ) ) ) ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 54 |
38 53
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 55 |
54
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑇 𝐶 ( 𝑇 ⊕ 𝑈 ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 56 |
36 55
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑇 ⊆ ( 𝑠 ⊕ 𝑇 ) ∧ ( 𝑠 ⊕ 𝑇 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 57 |
21 35 56
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) ) |
| 58 |
|
ineq1 |
⊢ ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 → ( ( 𝑠 ⊕ 𝑇 ) ∩ 𝑈 ) = ( 𝑇 ∩ 𝑈 ) ) |
| 59 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ) |
| 60 |
1 2 3 13 18 22 16 59 24
|
lcvexchlem2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) ∩ 𝑈 ) = 𝑠 ) |
| 61 |
60
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( ( 𝑠 ⊕ 𝑇 ) ∩ 𝑈 ) = ( 𝑇 ∩ 𝑈 ) ↔ 𝑠 = ( 𝑇 ∩ 𝑈 ) ) ) |
| 62 |
58 61
|
imbitrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 → 𝑠 = ( 𝑇 ∩ 𝑈 ) ) ) |
| 63 |
|
ineq1 |
⊢ ( ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) → ( ( 𝑠 ⊕ 𝑇 ) ∩ 𝑈 ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑈 ) ) |
| 64 |
2
|
lsmub2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 65 |
19 23 64
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 66 |
|
sseqin2 |
⊢ ( 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑈 ) = 𝑈 ) |
| 67 |
65 66
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑈 ) = 𝑈 ) |
| 68 |
60 67
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( ( 𝑠 ⊕ 𝑇 ) ∩ 𝑈 ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑈 ) ↔ 𝑠 = 𝑈 ) ) |
| 69 |
63 68
|
imbitrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) → 𝑠 = 𝑈 ) ) |
| 70 |
62 69
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( ( ( 𝑠 ⊕ 𝑇 ) = 𝑇 ∨ ( 𝑠 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑠 = ( 𝑇 ∩ 𝑈 ) ∨ 𝑠 = 𝑈 ) ) ) |
| 71 |
57 70
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑆 ∧ ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) ) → ( 𝑠 = ( 𝑇 ∩ 𝑈 ) ∨ 𝑠 = 𝑈 ) ) |
| 72 |
71
|
3exp |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝑆 → ( ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → ( 𝑠 = ( 𝑇 ∩ 𝑈 ) ∨ 𝑠 = 𝑈 ) ) ) ) |
| 73 |
72
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → ( 𝑠 = ( 𝑇 ∩ 𝑈 ) ∨ 𝑠 = 𝑈 ) ) ) |
| 74 |
1
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |
| 75 |
4 5 6 74
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |
| 76 |
1 3 4 75 6
|
lcvbr3 |
⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ↔ ( ( 𝑇 ∩ 𝑈 ) ⊊ 𝑈 ∧ ∀ 𝑠 ∈ 𝑆 ( ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈 ) → ( 𝑠 = ( 𝑇 ∩ 𝑈 ) ∨ 𝑠 = 𝑈 ) ) ) ) ) |
| 77 |
12 73 76
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) 𝐶 𝑈 ) |