| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lcvexch.s | 
							⊢ 𝑆  =  ( LSubSp ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							lcvexch.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							lcvexch.c | 
							⊢ 𝐶  =  (  ⋖L  ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							lcvexch.w | 
							⊢ ( 𝜑  →  𝑊  ∈  LMod )  | 
						
						
							| 5 | 
							
								
							 | 
							lcvexch.t | 
							⊢ ( 𝜑  →  𝑇  ∈  𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							lcvexch.u | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							lcvexch.r | 
							⊢ ( 𝜑  →  𝑅  ∈  𝑆 )  | 
						
						
							| 8 | 
							
								
							 | 
							lcvexch.a | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ⊆  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							lcvexch.b | 
							⊢ ( 𝜑  →  𝑅  ⊆  𝑈 )  | 
						
						
							| 10 | 
							
								1
							 | 
							lsssssubg | 
							⊢ ( 𝑊  ∈  LMod  →  𝑆  ⊆  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑆  ⊆  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 12 | 
							
								11 7
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝑅  ∈  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 13 | 
							
								11 5
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 14 | 
							
								11 6
							 | 
							sseldd | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 15 | 
							
								2
							 | 
							lsmmod | 
							⊢ ( ( ( 𝑅  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝑊 ) )  ∧  𝑅  ⊆  𝑈 )  →  ( 𝑅  ⊕  ( 𝑇  ∩  𝑈 ) )  =  ( ( 𝑅  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 16 | 
							
								12 13 14 9 15
							 | 
							syl31anc | 
							⊢ ( 𝜑  →  ( 𝑅  ⊕  ( 𝑇  ∩  𝑈 ) )  =  ( ( 𝑅  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							lssincl | 
							⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  ( 𝑇  ∩  𝑈 )  ∈  𝑆 )  | 
						
						
							| 18 | 
							
								4 5 6 17
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ∈  𝑆 )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							sseldd | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝑊 ) )  | 
						
						
							| 20 | 
							
								2
							 | 
							lsmss2 | 
							⊢ ( ( 𝑅  ∈  ( SubGrp ‘ 𝑊 )  ∧  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝑊 )  ∧  ( 𝑇  ∩  𝑈 )  ⊆  𝑅 )  →  ( 𝑅  ⊕  ( 𝑇  ∩  𝑈 ) )  =  𝑅 )  | 
						
						
							| 21 | 
							
								12 19 8 20
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑅  ⊕  ( 𝑇  ∩  𝑈 ) )  =  𝑅 )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( ( 𝑅  ⊕  𝑇 )  ∩  𝑈 )  =  𝑅 )  |