Metamath Proof Explorer


Theorem lcvexchlem2

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvexch.p = ( LSSum ‘ 𝑊 )
lcvexch.c 𝐶 = ( ⋖L𝑊 )
lcvexch.w ( 𝜑𝑊 ∈ LMod )
lcvexch.t ( 𝜑𝑇𝑆 )
lcvexch.u ( 𝜑𝑈𝑆 )
lcvexch.r ( 𝜑𝑅𝑆 )
lcvexch.a ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑅 )
lcvexch.b ( 𝜑𝑅𝑈 )
Assertion lcvexchlem2 ( 𝜑 → ( ( 𝑅 𝑇 ) ∩ 𝑈 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 lcvexch.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvexch.p = ( LSSum ‘ 𝑊 )
3 lcvexch.c 𝐶 = ( ⋖L𝑊 )
4 lcvexch.w ( 𝜑𝑊 ∈ LMod )
5 lcvexch.t ( 𝜑𝑇𝑆 )
6 lcvexch.u ( 𝜑𝑈𝑆 )
7 lcvexch.r ( 𝜑𝑅𝑆 )
8 lcvexch.a ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑅 )
9 lcvexch.b ( 𝜑𝑅𝑈 )
10 1 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
11 4 10 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
12 11 7 sseldd ( 𝜑𝑅 ∈ ( SubGrp ‘ 𝑊 ) )
13 11 5 sseldd ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
14 11 6 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
15 2 lsmmod ( ( ( 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) ∧ 𝑅𝑈 ) → ( 𝑅 ( 𝑇𝑈 ) ) = ( ( 𝑅 𝑇 ) ∩ 𝑈 ) )
16 12 13 14 9 15 syl31anc ( 𝜑 → ( 𝑅 ( 𝑇𝑈 ) ) = ( ( 𝑅 𝑇 ) ∩ 𝑈 ) )
17 1 lssincl ( ( 𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆 ) → ( 𝑇𝑈 ) ∈ 𝑆 )
18 4 5 6 17 syl3anc ( 𝜑 → ( 𝑇𝑈 ) ∈ 𝑆 )
19 11 18 sseldd ( 𝜑 → ( 𝑇𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) )
20 2 lsmss2 ( ( 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑇𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑇𝑈 ) ⊆ 𝑅 ) → ( 𝑅 ( 𝑇𝑈 ) ) = 𝑅 )
21 12 19 8 20 syl3anc ( 𝜑 → ( 𝑅 ( 𝑇𝑈 ) ) = 𝑅 )
22 16 21 eqtr3d ( 𝜑 → ( ( 𝑅 𝑇 ) ∩ 𝑈 ) = 𝑅 )