Metamath Proof Explorer


Theorem lcvexchlem2

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S = LSubSp W
lcvexch.p ˙ = LSSum W
lcvexch.c C = L W
lcvexch.w φ W LMod
lcvexch.t φ T S
lcvexch.u φ U S
lcvexch.r φ R S
lcvexch.a φ T U R
lcvexch.b φ R U
Assertion lcvexchlem2 φ R ˙ T U = R

Proof

Step Hyp Ref Expression
1 lcvexch.s S = LSubSp W
2 lcvexch.p ˙ = LSSum W
3 lcvexch.c C = L W
4 lcvexch.w φ W LMod
5 lcvexch.t φ T S
6 lcvexch.u φ U S
7 lcvexch.r φ R S
8 lcvexch.a φ T U R
9 lcvexch.b φ R U
10 1 lsssssubg W LMod S SubGrp W
11 4 10 syl φ S SubGrp W
12 11 7 sseldd φ R SubGrp W
13 11 5 sseldd φ T SubGrp W
14 11 6 sseldd φ U SubGrp W
15 2 lsmmod R SubGrp W T SubGrp W U SubGrp W R U R ˙ T U = R ˙ T U
16 12 13 14 9 15 syl31anc φ R ˙ T U = R ˙ T U
17 1 lssincl W LMod T S U S T U S
18 4 5 6 17 syl3anc φ T U S
19 11 18 sseldd φ T U SubGrp W
20 2 lsmss2 R SubGrp W T U SubGrp W T U R R ˙ T U = R
21 12 19 8 20 syl3anc φ R ˙ T U = R
22 16 21 eqtr3d φ R ˙ T U = R