| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lcvexch.s | 
							 |-  S = ( LSubSp ` W )  | 
						
						
							| 2 | 
							
								
							 | 
							lcvexch.p | 
							 |-  .(+) = ( LSSum ` W )  | 
						
						
							| 3 | 
							
								
							 | 
							lcvexch.c | 
							 |-  C = ( 
   | 
						
						
							| 4 | 
							
								
							 | 
							lcvexch.w | 
							 |-  ( ph -> W e. LMod )  | 
						
						
							| 5 | 
							
								
							 | 
							lcvexch.t | 
							 |-  ( ph -> T e. S )  | 
						
						
							| 6 | 
							
								
							 | 
							lcvexch.u | 
							 |-  ( ph -> U e. S )  | 
						
						
							| 7 | 
							
								
							 | 
							lcvexch.r | 
							 |-  ( ph -> R e. S )  | 
						
						
							| 8 | 
							
								
							 | 
							lcvexch.a | 
							 |-  ( ph -> ( T i^i U ) C_ R )  | 
						
						
							| 9 | 
							
								
							 | 
							lcvexch.b | 
							 |-  ( ph -> R C_ U )  | 
						
						
							| 10 | 
							
								1
							 | 
							lsssssubg | 
							 |-  ( W e. LMod -> S C_ ( SubGrp ` W ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl | 
							 |-  ( ph -> S C_ ( SubGrp ` W ) )  | 
						
						
							| 12 | 
							
								11 7
							 | 
							sseldd | 
							 |-  ( ph -> R e. ( SubGrp ` W ) )  | 
						
						
							| 13 | 
							
								11 5
							 | 
							sseldd | 
							 |-  ( ph -> T e. ( SubGrp ` W ) )  | 
						
						
							| 14 | 
							
								11 6
							 | 
							sseldd | 
							 |-  ( ph -> U e. ( SubGrp ` W ) )  | 
						
						
							| 15 | 
							
								2
							 | 
							lsmmod | 
							 |-  ( ( ( R e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) /\ R C_ U ) -> ( R .(+) ( T i^i U ) ) = ( ( R .(+) T ) i^i U ) )  | 
						
						
							| 16 | 
							
								12 13 14 9 15
							 | 
							syl31anc | 
							 |-  ( ph -> ( R .(+) ( T i^i U ) ) = ( ( R .(+) T ) i^i U ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							lssincl | 
							 |-  ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S )  | 
						
						
							| 18 | 
							
								4 5 6 17
							 | 
							syl3anc | 
							 |-  ( ph -> ( T i^i U ) e. S )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							sseldd | 
							 |-  ( ph -> ( T i^i U ) e. ( SubGrp ` W ) )  | 
						
						
							| 20 | 
							
								2
							 | 
							lsmss2 | 
							 |-  ( ( R e. ( SubGrp ` W ) /\ ( T i^i U ) e. ( SubGrp ` W ) /\ ( T i^i U ) C_ R ) -> ( R .(+) ( T i^i U ) ) = R )  | 
						
						
							| 21 | 
							
								12 19 8 20
							 | 
							syl3anc | 
							 |-  ( ph -> ( R .(+) ( T i^i U ) ) = R )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							eqtr3d | 
							 |-  ( ph -> ( ( R .(+) T ) i^i U ) = R )  |