Metamath Proof Explorer


Theorem lcvexchlem2

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s
|- S = ( LSubSp ` W )
lcvexch.p
|- .(+) = ( LSSum ` W )
lcvexch.c
|- C = ( 
    lcvexch.w
    |- ( ph -> W e. LMod )
    lcvexch.t
    |- ( ph -> T e. S )
    lcvexch.u
    |- ( ph -> U e. S )
    lcvexch.r
    |- ( ph -> R e. S )
    lcvexch.a
    |- ( ph -> ( T i^i U ) C_ R )
    lcvexch.b
    |- ( ph -> R C_ U )
    Assertion lcvexchlem2
    |- ( ph -> ( ( R .(+) T ) i^i U ) = R )

    Proof

    Step Hyp Ref Expression
    1 lcvexch.s
     |-  S = ( LSubSp ` W )
    2 lcvexch.p
     |-  .(+) = ( LSSum ` W )
    3 lcvexch.c
     |-  C = ( 
      4 lcvexch.w
       |-  ( ph -> W e. LMod )
      5 lcvexch.t
       |-  ( ph -> T e. S )
      6 lcvexch.u
       |-  ( ph -> U e. S )
      7 lcvexch.r
       |-  ( ph -> R e. S )
      8 lcvexch.a
       |-  ( ph -> ( T i^i U ) C_ R )
      9 lcvexch.b
       |-  ( ph -> R C_ U )
      10 1 lsssssubg
       |-  ( W e. LMod -> S C_ ( SubGrp ` W ) )
      11 4 10 syl
       |-  ( ph -> S C_ ( SubGrp ` W ) )
      12 11 7 sseldd
       |-  ( ph -> R e. ( SubGrp ` W ) )
      13 11 5 sseldd
       |-  ( ph -> T e. ( SubGrp ` W ) )
      14 11 6 sseldd
       |-  ( ph -> U e. ( SubGrp ` W ) )
      15 2 lsmmod
       |-  ( ( ( R e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) /\ R C_ U ) -> ( R .(+) ( T i^i U ) ) = ( ( R .(+) T ) i^i U ) )
      16 12 13 14 9 15 syl31anc
       |-  ( ph -> ( R .(+) ( T i^i U ) ) = ( ( R .(+) T ) i^i U ) )
      17 1 lssincl
       |-  ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S )
      18 4 5 6 17 syl3anc
       |-  ( ph -> ( T i^i U ) e. S )
      19 11 18 sseldd
       |-  ( ph -> ( T i^i U ) e. ( SubGrp ` W ) )
      20 2 lsmss2
       |-  ( ( R e. ( SubGrp ` W ) /\ ( T i^i U ) e. ( SubGrp ` W ) /\ ( T i^i U ) C_ R ) -> ( R .(+) ( T i^i U ) ) = R )
      21 12 19 8 20 syl3anc
       |-  ( ph -> ( R .(+) ( T i^i U ) ) = R )
      22 16 21 eqtr3d
       |-  ( ph -> ( ( R .(+) T ) i^i U ) = R )