Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝐺 ∈ Grp ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
4
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
7 |
4
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |
10 |
4 1
|
lsmless1x |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑆 ⊕ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
11 |
3 6 8 9 10
|
syl31anc |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑆 ⊕ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |