Metamath Proof Explorer


Theorem lsmless1

Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmless1 TSubGrpGUSubGrpGSTS˙UT˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 subgrcl TSubGrpGGGrp
3 2 3ad2ant1 TSubGrpGUSubGrpGSTGGrp
4 eqid BaseG=BaseG
5 4 subgss TSubGrpGTBaseG
6 5 3ad2ant1 TSubGrpGUSubGrpGSTTBaseG
7 4 subgss USubGrpGUBaseG
8 7 3ad2ant2 TSubGrpGUSubGrpGSTUBaseG
9 simp3 TSubGrpGUSubGrpGSTST
10 4 1 lsmless1x GGrpTBaseGUBaseGSTS˙UT˙U
11 3 6 8 9 10 syl31anc TSubGrpGUSubGrpGSTS˙UT˙U