Step |
Hyp |
Ref |
Expression |
1 |
|
lcvexch.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvexch.p |
|- .(+) = ( LSSum ` W ) |
3 |
|
lcvexch.c |
|- C = (
|
4 |
|
lcvexch.w |
|- ( ph -> W e. LMod ) |
5 |
|
lcvexch.t |
|- ( ph -> T e. S ) |
6 |
|
lcvexch.u |
|- ( ph -> U e. S ) |
7 |
|
lcvexch.f |
|- ( ph -> T C ( T .(+) U ) ) |
8 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |
9 |
4 5 6 8
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. S ) |
10 |
1 3 4 5 9 7
|
lcvpss |
|- ( ph -> T C. ( T .(+) U ) ) |
11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|- ( ph -> ( T C. ( T .(+) U ) <-> ( T i^i U ) C. U ) ) |
12 |
10 11
|
mpbid |
|- ( ph -> ( T i^i U ) C. U ) |
13 |
4
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> W e. LMod ) |
14 |
1
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
15 |
13 14
|
syl |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> S C_ ( SubGrp ` W ) ) |
16 |
|
simp2 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> s e. S ) |
17 |
15 16
|
sseldd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> s e. ( SubGrp ` W ) ) |
18 |
5
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> T e. S ) |
19 |
15 18
|
sseldd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> T e. ( SubGrp ` W ) ) |
20 |
2
|
lsmub2 |
|- ( ( s e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) ) -> T C_ ( s .(+) T ) ) |
21 |
17 19 20
|
syl2anc |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> T C_ ( s .(+) T ) ) |
22 |
6
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> U e. S ) |
23 |
15 22
|
sseldd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> U e. ( SubGrp ` W ) ) |
24 |
|
simp3r |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> s C_ U ) |
25 |
2
|
lsmless1 |
|- ( ( U e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) /\ s C_ U ) -> ( s .(+) T ) C_ ( U .(+) T ) ) |
26 |
23 19 24 25
|
syl3anc |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( s .(+) T ) C_ ( U .(+) T ) ) |
27 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
28 |
4 27
|
syl |
|- ( ph -> W e. Abel ) |
29 |
4 14
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
30 |
29 5
|
sseldd |
|- ( ph -> T e. ( SubGrp ` W ) ) |
31 |
29 6
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
32 |
2
|
lsmcom |
|- ( ( W e. Abel /\ T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
33 |
28 30 31 32
|
syl3anc |
|- ( ph -> ( T .(+) U ) = ( U .(+) T ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
35 |
26 34
|
sseqtrrd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( s .(+) T ) C_ ( T .(+) U ) ) |
36 |
7
|
3ad2ant1 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> T C ( T .(+) U ) ) |
37 |
1 3 4 5 9
|
lcvbr3 |
|- ( ph -> ( T C ( T .(+) U ) <-> ( T C. ( T .(+) U ) /\ A. r e. S ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) ) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ s e. S ) -> ( T C ( T .(+) U ) <-> ( T C. ( T .(+) U ) /\ A. r e. S ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) ) ) ) |
39 |
4
|
adantr |
|- ( ( ph /\ s e. S ) -> W e. LMod ) |
40 |
|
simpr |
|- ( ( ph /\ s e. S ) -> s e. S ) |
41 |
5
|
adantr |
|- ( ( ph /\ s e. S ) -> T e. S ) |
42 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ s e. S /\ T e. S ) -> ( s .(+) T ) e. S ) |
43 |
39 40 41 42
|
syl3anc |
|- ( ( ph /\ s e. S ) -> ( s .(+) T ) e. S ) |
44 |
|
sseq2 |
|- ( r = ( s .(+) T ) -> ( T C_ r <-> T C_ ( s .(+) T ) ) ) |
45 |
|
sseq1 |
|- ( r = ( s .(+) T ) -> ( r C_ ( T .(+) U ) <-> ( s .(+) T ) C_ ( T .(+) U ) ) ) |
46 |
44 45
|
anbi12d |
|- ( r = ( s .(+) T ) -> ( ( T C_ r /\ r C_ ( T .(+) U ) ) <-> ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) ) ) |
47 |
|
eqeq1 |
|- ( r = ( s .(+) T ) -> ( r = T <-> ( s .(+) T ) = T ) ) |
48 |
|
eqeq1 |
|- ( r = ( s .(+) T ) -> ( r = ( T .(+) U ) <-> ( s .(+) T ) = ( T .(+) U ) ) ) |
49 |
47 48
|
orbi12d |
|- ( r = ( s .(+) T ) -> ( ( r = T \/ r = ( T .(+) U ) ) <-> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) |
50 |
46 49
|
imbi12d |
|- ( r = ( s .(+) T ) -> ( ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) <-> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
51 |
50
|
rspcv |
|- ( ( s .(+) T ) e. S -> ( A. r e. S ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
52 |
43 51
|
syl |
|- ( ( ph /\ s e. S ) -> ( A. r e. S ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
53 |
52
|
adantld |
|- ( ( ph /\ s e. S ) -> ( ( T C. ( T .(+) U ) /\ A. r e. S ( ( T C_ r /\ r C_ ( T .(+) U ) ) -> ( r = T \/ r = ( T .(+) U ) ) ) ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
54 |
38 53
|
sylbid |
|- ( ( ph /\ s e. S ) -> ( T C ( T .(+) U ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
55 |
54
|
3adant3 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( T C ( T .(+) U ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) ) |
56 |
36 55
|
mpd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( T C_ ( s .(+) T ) /\ ( s .(+) T ) C_ ( T .(+) U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) ) |
57 |
21 35 56
|
mp2and |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) ) |
58 |
|
ineq1 |
|- ( ( s .(+) T ) = T -> ( ( s .(+) T ) i^i U ) = ( T i^i U ) ) |
59 |
|
simp3l |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( T i^i U ) C_ s ) |
60 |
1 2 3 13 18 22 16 59 24
|
lcvexchlem2 |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( s .(+) T ) i^i U ) = s ) |
61 |
60
|
eqeq1d |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( ( s .(+) T ) i^i U ) = ( T i^i U ) <-> s = ( T i^i U ) ) ) |
62 |
58 61
|
syl5ib |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( s .(+) T ) = T -> s = ( T i^i U ) ) ) |
63 |
|
ineq1 |
|- ( ( s .(+) T ) = ( T .(+) U ) -> ( ( s .(+) T ) i^i U ) = ( ( T .(+) U ) i^i U ) ) |
64 |
2
|
lsmub2 |
|- ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> U C_ ( T .(+) U ) ) |
65 |
19 23 64
|
syl2anc |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> U C_ ( T .(+) U ) ) |
66 |
|
sseqin2 |
|- ( U C_ ( T .(+) U ) <-> ( ( T .(+) U ) i^i U ) = U ) |
67 |
65 66
|
sylib |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( T .(+) U ) i^i U ) = U ) |
68 |
60 67
|
eqeq12d |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( ( s .(+) T ) i^i U ) = ( ( T .(+) U ) i^i U ) <-> s = U ) ) |
69 |
63 68
|
syl5ib |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( s .(+) T ) = ( T .(+) U ) -> s = U ) ) |
70 |
62 69
|
orim12d |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( ( ( s .(+) T ) = T \/ ( s .(+) T ) = ( T .(+) U ) ) -> ( s = ( T i^i U ) \/ s = U ) ) ) |
71 |
57 70
|
mpd |
|- ( ( ph /\ s e. S /\ ( ( T i^i U ) C_ s /\ s C_ U ) ) -> ( s = ( T i^i U ) \/ s = U ) ) |
72 |
71
|
3exp |
|- ( ph -> ( s e. S -> ( ( ( T i^i U ) C_ s /\ s C_ U ) -> ( s = ( T i^i U ) \/ s = U ) ) ) ) |
73 |
72
|
ralrimiv |
|- ( ph -> A. s e. S ( ( ( T i^i U ) C_ s /\ s C_ U ) -> ( s = ( T i^i U ) \/ s = U ) ) ) |
74 |
1
|
lssincl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S ) |
75 |
4 5 6 74
|
syl3anc |
|- ( ph -> ( T i^i U ) e. S ) |
76 |
1 3 4 75 6
|
lcvbr3 |
|- ( ph -> ( ( T i^i U ) C U <-> ( ( T i^i U ) C. U /\ A. s e. S ( ( ( T i^i U ) C_ s /\ s C_ U ) -> ( s = ( T i^i U ) \/ s = U ) ) ) ) ) |
77 |
12 73 76
|
mpbir2and |
|- ( ph -> ( T i^i U ) C U ) |