Metamath Proof Explorer


Theorem lcvexchlem4

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
lcvexch.f φTCT˙U
Assertion lcvexchlem4 φTUCU

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 lcvexch.f φTCT˙U
8 1 2 lsmcl WLModTSUST˙US
9 4 5 6 8 syl3anc φT˙US
10 1 3 4 5 9 7 lcvpss φTT˙U
11 1 2 3 4 5 6 lcvexchlem1 φTT˙UTUU
12 10 11 mpbid φTUU
13 4 3ad2ant1 φsSTUssUWLMod
14 1 lsssssubg WLModSSubGrpW
15 13 14 syl φsSTUssUSSubGrpW
16 simp2 φsSTUssUsS
17 15 16 sseldd φsSTUssUsSubGrpW
18 5 3ad2ant1 φsSTUssUTS
19 15 18 sseldd φsSTUssUTSubGrpW
20 2 lsmub2 sSubGrpWTSubGrpWTs˙T
21 17 19 20 syl2anc φsSTUssUTs˙T
22 6 3ad2ant1 φsSTUssUUS
23 15 22 sseldd φsSTUssUUSubGrpW
24 simp3r φsSTUssUsU
25 2 lsmless1 USubGrpWTSubGrpWsUs˙TU˙T
26 23 19 24 25 syl3anc φsSTUssUs˙TU˙T
27 lmodabl WLModWAbel
28 4 27 syl φWAbel
29 4 14 syl φSSubGrpW
30 29 5 sseldd φTSubGrpW
31 29 6 sseldd φUSubGrpW
32 2 lsmcom WAbelTSubGrpWUSubGrpWT˙U=U˙T
33 28 30 31 32 syl3anc φT˙U=U˙T
34 33 3ad2ant1 φsSTUssUT˙U=U˙T
35 26 34 sseqtrrd φsSTUssUs˙TT˙U
36 7 3ad2ant1 φsSTUssUTCT˙U
37 1 3 4 5 9 lcvbr3 φTCT˙UTT˙UrSTrrT˙Ur=Tr=T˙U
38 37 adantr φsSTCT˙UTT˙UrSTrrT˙Ur=Tr=T˙U
39 4 adantr φsSWLMod
40 simpr φsSsS
41 5 adantr φsSTS
42 1 2 lsmcl WLModsSTSs˙TS
43 39 40 41 42 syl3anc φsSs˙TS
44 sseq2 r=s˙TTrTs˙T
45 sseq1 r=s˙TrT˙Us˙TT˙U
46 44 45 anbi12d r=s˙TTrrT˙UTs˙Ts˙TT˙U
47 eqeq1 r=s˙Tr=Ts˙T=T
48 eqeq1 r=s˙Tr=T˙Us˙T=T˙U
49 47 48 orbi12d r=s˙Tr=Tr=T˙Us˙T=Ts˙T=T˙U
50 46 49 imbi12d r=s˙TTrrT˙Ur=Tr=T˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
51 50 rspcv s˙TSrSTrrT˙Ur=Tr=T˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
52 43 51 syl φsSrSTrrT˙Ur=Tr=T˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
53 52 adantld φsSTT˙UrSTrrT˙Ur=Tr=T˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
54 38 53 sylbid φsSTCT˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
55 54 3adant3 φsSTUssUTCT˙UTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
56 36 55 mpd φsSTUssUTs˙Ts˙TT˙Us˙T=Ts˙T=T˙U
57 21 35 56 mp2and φsSTUssUs˙T=Ts˙T=T˙U
58 ineq1 s˙T=Ts˙TU=TU
59 simp3l φsSTUssUTUs
60 1 2 3 13 18 22 16 59 24 lcvexchlem2 φsSTUssUs˙TU=s
61 60 eqeq1d φsSTUssUs˙TU=TUs=TU
62 58 61 imbitrid φsSTUssUs˙T=Ts=TU
63 ineq1 s˙T=T˙Us˙TU=T˙UU
64 2 lsmub2 TSubGrpWUSubGrpWUT˙U
65 19 23 64 syl2anc φsSTUssUUT˙U
66 sseqin2 UT˙UT˙UU=U
67 65 66 sylib φsSTUssUT˙UU=U
68 60 67 eqeq12d φsSTUssUs˙TU=T˙UUs=U
69 63 68 imbitrid φsSTUssUs˙T=T˙Us=U
70 62 69 orim12d φsSTUssUs˙T=Ts˙T=T˙Us=TUs=U
71 57 70 mpd φsSTUssUs=TUs=U
72 71 3exp φsSTUssUs=TUs=U
73 72 ralrimiv φsSTUssUs=TUs=U
74 1 lssincl WLModTSUSTUS
75 4 5 6 74 syl3anc φTUS
76 1 3 4 75 6 lcvbr3 φTUCUTUUsSTUssUs=TUs=U
77 12 73 76 mpbir2and φTUCU