Step |
Hyp |
Ref |
Expression |
1 |
|
lcvexch.s |
|
2 |
|
lcvexch.p |
|
3 |
|
lcvexch.c |
|
4 |
|
lcvexch.w |
|
5 |
|
lcvexch.t |
|
6 |
|
lcvexch.u |
|
7 |
|
lcvexch.f |
|
8 |
1 2
|
lsmcl |
|
9 |
4 5 6 8
|
syl3anc |
|
10 |
1 3 4 5 9 7
|
lcvpss |
|
11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|
12 |
10 11
|
mpbid |
|
13 |
4
|
3ad2ant1 |
|
14 |
1
|
lsssssubg |
|
15 |
13 14
|
syl |
|
16 |
|
simp2 |
|
17 |
15 16
|
sseldd |
|
18 |
5
|
3ad2ant1 |
|
19 |
15 18
|
sseldd |
|
20 |
2
|
lsmub2 |
|
21 |
17 19 20
|
syl2anc |
|
22 |
6
|
3ad2ant1 |
|
23 |
15 22
|
sseldd |
|
24 |
|
simp3r |
|
25 |
2
|
lsmless1 |
|
26 |
23 19 24 25
|
syl3anc |
|
27 |
|
lmodabl |
|
28 |
4 27
|
syl |
|
29 |
4 14
|
syl |
|
30 |
29 5
|
sseldd |
|
31 |
29 6
|
sseldd |
|
32 |
2
|
lsmcom |
|
33 |
28 30 31 32
|
syl3anc |
|
34 |
33
|
3ad2ant1 |
|
35 |
26 34
|
sseqtrrd |
|
36 |
7
|
3ad2ant1 |
|
37 |
1 3 4 5 9
|
lcvbr3 |
|
38 |
37
|
adantr |
|
39 |
4
|
adantr |
|
40 |
|
simpr |
|
41 |
5
|
adantr |
|
42 |
1 2
|
lsmcl |
|
43 |
39 40 41 42
|
syl3anc |
|
44 |
|
sseq2 |
|
45 |
|
sseq1 |
|
46 |
44 45
|
anbi12d |
|
47 |
|
eqeq1 |
|
48 |
|
eqeq1 |
|
49 |
47 48
|
orbi12d |
|
50 |
46 49
|
imbi12d |
|
51 |
50
|
rspcv |
|
52 |
43 51
|
syl |
|
53 |
52
|
adantld |
|
54 |
38 53
|
sylbid |
|
55 |
54
|
3adant3 |
|
56 |
36 55
|
mpd |
|
57 |
21 35 56
|
mp2and |
|
58 |
|
ineq1 |
|
59 |
|
simp3l |
|
60 |
1 2 3 13 18 22 16 59 24
|
lcvexchlem2 |
|
61 |
60
|
eqeq1d |
|
62 |
58 61
|
syl5ib |
|
63 |
|
ineq1 |
|
64 |
2
|
lsmub2 |
|
65 |
19 23 64
|
syl2anc |
|
66 |
|
sseqin2 |
|
67 |
65 66
|
sylib |
|
68 |
60 67
|
eqeq12d |
|
69 |
63 68
|
syl5ib |
|
70 |
62 69
|
orim12d |
|
71 |
57 70
|
mpd |
|
72 |
71
|
3exp |
|
73 |
72
|
ralrimiv |
|
74 |
1
|
lssincl |
|
75 |
4 5 6 74
|
syl3anc |
|
76 |
1 3 4 75 6
|
lcvbr3 |
|
77 |
12 73 76
|
mpbir2and |
|