| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvp.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcvp.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lcvp.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lcvp.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
lcvp.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 6 |
|
lcvp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lcvp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
lcvp.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 |
1 4 10 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 12 |
1
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆 ) → ( 𝑈 ∩ 𝑄 ) ∈ 𝑆 ) |
| 13 |
10 7 11 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∩ 𝑄 ) ∈ 𝑆 ) |
| 14 |
3 1 4 5 6 13 8
|
lsatcveq0 |
⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑄 ) 𝐶 𝑄 ↔ ( 𝑈 ∩ 𝑄 ) = { 0 } ) ) |
| 15 |
1 2 5 10 7 11
|
lcvexch |
⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑄 ) 𝐶 𝑄 ↔ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |
| 16 |
14 15
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑄 ) = { 0 } ↔ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |