Metamath Proof Explorer


Theorem lcvp

Description: Covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvp.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcvp.p = ( LSSum ‘ 𝑊 )
lcvp.o 0 = ( 0g𝑊 )
lcvp.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lcvp.c 𝐶 = ( ⋖L𝑊 )
lcvp.w ( 𝜑𝑊 ∈ LVec )
lcvp.u ( 𝜑𝑈𝑆 )
lcvp.q ( 𝜑𝑄𝐴 )
Assertion lcvp ( 𝜑 → ( ( 𝑈𝑄 ) = { 0 } ↔ 𝑈 𝐶 ( 𝑈 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 lcvp.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcvp.p = ( LSSum ‘ 𝑊 )
3 lcvp.o 0 = ( 0g𝑊 )
4 lcvp.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 lcvp.c 𝐶 = ( ⋖L𝑊 )
6 lcvp.w ( 𝜑𝑊 ∈ LVec )
7 lcvp.u ( 𝜑𝑈𝑆 )
8 lcvp.q ( 𝜑𝑄𝐴 )
9 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
10 6 9 syl ( 𝜑𝑊 ∈ LMod )
11 1 4 10 8 lsatlssel ( 𝜑𝑄𝑆 )
12 1 lssincl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆 ) → ( 𝑈𝑄 ) ∈ 𝑆 )
13 10 7 11 12 syl3anc ( 𝜑 → ( 𝑈𝑄 ) ∈ 𝑆 )
14 3 1 4 5 6 13 8 lsatcveq0 ( 𝜑 → ( ( 𝑈𝑄 ) 𝐶 𝑄 ↔ ( 𝑈𝑄 ) = { 0 } ) )
15 1 2 5 10 7 11 lcvexch ( 𝜑 → ( ( 𝑈𝑄 ) 𝐶 𝑄𝑈 𝐶 ( 𝑈 𝑄 ) ) )
16 14 15 bitr3d ( 𝜑 → ( ( 𝑈𝑄 ) = { 0 } ↔ 𝑈 𝐶 ( 𝑈 𝑄 ) ) )