Step |
Hyp |
Ref |
Expression |
1 |
|
lcvp.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcvp.p |
|- .(+) = ( LSSum ` W ) |
3 |
|
lcvp.o |
|- .0. = ( 0g ` W ) |
4 |
|
lcvp.a |
|- A = ( LSAtoms ` W ) |
5 |
|
lcvp.c |
|- C = (
|
6 |
|
lcvp.w |
|- ( ph -> W e. LVec ) |
7 |
|
lcvp.u |
|- ( ph -> U e. S ) |
8 |
|
lcvp.q |
|- ( ph -> Q e. A ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
6 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
1 4 10 8
|
lsatlssel |
|- ( ph -> Q e. S ) |
12 |
1
|
lssincl |
|- ( ( W e. LMod /\ U e. S /\ Q e. S ) -> ( U i^i Q ) e. S ) |
13 |
10 7 11 12
|
syl3anc |
|- ( ph -> ( U i^i Q ) e. S ) |
14 |
3 1 4 5 6 13 8
|
lsatcveq0 |
|- ( ph -> ( ( U i^i Q ) C Q <-> ( U i^i Q ) = { .0. } ) ) |
15 |
1 2 5 10 7 11
|
lcvexch |
|- ( ph -> ( ( U i^i Q ) C Q <-> U C ( U .(+) Q ) ) ) |
16 |
14 15
|
bitr3d |
|- ( ph -> ( ( U i^i Q ) = { .0. } <-> U C ( U .(+) Q ) ) ) |