| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcv1.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lcv1.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lcv1.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lcv1.c |
|- C = (
|
| 5 |
|
lcv1.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lcv1.u |
|- ( ph -> U e. S ) |
| 7 |
|
lcv1.q |
|- ( ph -> Q e. A ) |
| 8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 9 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 11 |
8 9 10 3
|
islsat |
|- ( W e. LVec -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
| 12 |
5 11
|
syl |
|- ( ph -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
| 13 |
7 12
|
mpbid |
|- ( ph -> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> W e. LVec ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> W e. LVec ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> U e. S ) |
| 18 |
17
|
3ad2ant1 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U e. S ) |
| 19 |
|
eldifi |
|- ( x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) -> x e. ( Base ` W ) ) |
| 20 |
19
|
3ad2ant2 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> x e. ( Base ` W ) ) |
| 21 |
|
simp1r |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> -. Q C_ U ) |
| 22 |
|
simp3 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> Q = ( ( LSpan ` W ) ` { x } ) ) |
| 23 |
22
|
sseq1d |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> ( Q C_ U <-> ( ( LSpan ` W ) ` { x } ) C_ U ) ) |
| 24 |
21 23
|
mtbid |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> -. ( ( LSpan ` W ) ` { x } ) C_ U ) |
| 25 |
8 1 9 2 4 16 18 20 24
|
lsmcv2 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U C ( U .(+) ( ( LSpan ` W ) ` { x } ) ) ) |
| 26 |
22
|
oveq2d |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> ( U .(+) Q ) = ( U .(+) ( ( LSpan ` W ) ` { x } ) ) ) |
| 27 |
25 26
|
breqtrrd |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U C ( U .(+) Q ) ) |
| 28 |
27
|
rexlimdv3a |
|- ( ( ph /\ -. Q C_ U ) -> ( E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) -> U C ( U .(+) Q ) ) ) |
| 29 |
14 28
|
mpd |
|- ( ( ph /\ -. Q C_ U ) -> U C ( U .(+) Q ) ) |
| 30 |
5
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> W e. LVec ) |
| 31 |
6
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U e. S ) |
| 32 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 33 |
5 32
|
syl |
|- ( ph -> W e. LMod ) |
| 34 |
1 3 33 7
|
lsatlssel |
|- ( ph -> Q e. S ) |
| 35 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ U e. S /\ Q e. S ) -> ( U .(+) Q ) e. S ) |
| 36 |
33 6 34 35
|
syl3anc |
|- ( ph -> ( U .(+) Q ) e. S ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> ( U .(+) Q ) e. S ) |
| 38 |
|
simpr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U C ( U .(+) Q ) ) |
| 39 |
1 4 30 31 37 38
|
lcvpss |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U C. ( U .(+) Q ) ) |
| 40 |
1
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 41 |
33 40
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
| 42 |
41 6
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 43 |
41 34
|
sseldd |
|- ( ph -> Q e. ( SubGrp ` W ) ) |
| 44 |
2 42 43
|
lssnle |
|- ( ph -> ( -. Q C_ U <-> U C. ( U .(+) Q ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> ( -. Q C_ U <-> U C. ( U .(+) Q ) ) ) |
| 46 |
39 45
|
mpbird |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> -. Q C_ U ) |
| 47 |
29 46
|
impbida |
|- ( ph -> ( -. Q C_ U <-> U C ( U .(+) Q ) ) ) |