Step |
Hyp |
Ref |
Expression |
1 |
|
lcv1.s |
|- S = ( LSubSp ` W ) |
2 |
|
lcv1.p |
|- .(+) = ( LSSum ` W ) |
3 |
|
lcv1.a |
|- A = ( LSAtoms ` W ) |
4 |
|
lcv1.c |
|- C = (
|
5 |
|
lcv1.w |
|- ( ph -> W e. LVec ) |
6 |
|
lcv1.u |
|- ( ph -> U e. S ) |
7 |
|
lcv1.q |
|- ( ph -> Q e. A ) |
8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
9 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
11 |
8 9 10 3
|
islsat |
|- ( W e. LVec -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
12 |
5 11
|
syl |
|- ( ph -> ( Q e. A <-> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) ) |
13 |
7 12
|
mpbid |
|- ( ph -> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) ) |
15 |
5
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> W e. LVec ) |
16 |
15
|
3ad2ant1 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> W e. LVec ) |
17 |
6
|
adantr |
|- ( ( ph /\ -. Q C_ U ) -> U e. S ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U e. S ) |
19 |
|
eldifi |
|- ( x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) -> x e. ( Base ` W ) ) |
20 |
19
|
3ad2ant2 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> x e. ( Base ` W ) ) |
21 |
|
simp1r |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> -. Q C_ U ) |
22 |
|
simp3 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> Q = ( ( LSpan ` W ) ` { x } ) ) |
23 |
22
|
sseq1d |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> ( Q C_ U <-> ( ( LSpan ` W ) ` { x } ) C_ U ) ) |
24 |
21 23
|
mtbid |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> -. ( ( LSpan ` W ) ` { x } ) C_ U ) |
25 |
8 1 9 2 4 16 18 20 24
|
lsmcv2 |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U C ( U .(+) ( ( LSpan ` W ) ` { x } ) ) ) |
26 |
22
|
oveq2d |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> ( U .(+) Q ) = ( U .(+) ( ( LSpan ` W ) ` { x } ) ) ) |
27 |
25 26
|
breqtrrd |
|- ( ( ( ph /\ -. Q C_ U ) /\ x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) /\ Q = ( ( LSpan ` W ) ` { x } ) ) -> U C ( U .(+) Q ) ) |
28 |
27
|
rexlimdv3a |
|- ( ( ph /\ -. Q C_ U ) -> ( E. x e. ( ( Base ` W ) \ { ( 0g ` W ) } ) Q = ( ( LSpan ` W ) ` { x } ) -> U C ( U .(+) Q ) ) ) |
29 |
14 28
|
mpd |
|- ( ( ph /\ -. Q C_ U ) -> U C ( U .(+) Q ) ) |
30 |
5
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> W e. LVec ) |
31 |
6
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U e. S ) |
32 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
33 |
5 32
|
syl |
|- ( ph -> W e. LMod ) |
34 |
1 3 33 7
|
lsatlssel |
|- ( ph -> Q e. S ) |
35 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ U e. S /\ Q e. S ) -> ( U .(+) Q ) e. S ) |
36 |
33 6 34 35
|
syl3anc |
|- ( ph -> ( U .(+) Q ) e. S ) |
37 |
36
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> ( U .(+) Q ) e. S ) |
38 |
|
simpr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U C ( U .(+) Q ) ) |
39 |
1 4 30 31 37 38
|
lcvpss |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> U C. ( U .(+) Q ) ) |
40 |
1
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
41 |
33 40
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
42 |
41 6
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
43 |
41 34
|
sseldd |
|- ( ph -> Q e. ( SubGrp ` W ) ) |
44 |
2 42 43
|
lssnle |
|- ( ph -> ( -. Q C_ U <-> U C. ( U .(+) Q ) ) ) |
45 |
44
|
adantr |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> ( -. Q C_ U <-> U C. ( U .(+) Q ) ) ) |
46 |
39 45
|
mpbird |
|- ( ( ph /\ U C ( U .(+) Q ) ) -> -. Q C_ U ) |
47 |
29 46
|
impbida |
|- ( ph -> ( -. Q C_ U <-> U C ( U .(+) Q ) ) ) |