Metamath Proof Explorer


Theorem lcv1

Description: Covering property of a subspace plus an atom. ( chcv1 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcv1.s 𝑆 = ( LSubSp ‘ 𝑊 )
lcv1.p = ( LSSum ‘ 𝑊 )
lcv1.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lcv1.c 𝐶 = ( ⋖L𝑊 )
lcv1.w ( 𝜑𝑊 ∈ LVec )
lcv1.u ( 𝜑𝑈𝑆 )
lcv1.q ( 𝜑𝑄𝐴 )
Assertion lcv1 ( 𝜑 → ( ¬ 𝑄𝑈𝑈 𝐶 ( 𝑈 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 lcv1.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lcv1.p = ( LSSum ‘ 𝑊 )
3 lcv1.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lcv1.c 𝐶 = ( ⋖L𝑊 )
5 lcv1.w ( 𝜑𝑊 ∈ LVec )
6 lcv1.u ( 𝜑𝑈𝑆 )
7 lcv1.q ( 𝜑𝑄𝐴 )
8 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
9 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
10 eqid ( 0g𝑊 ) = ( 0g𝑊 )
11 8 9 10 3 islsat ( 𝑊 ∈ LVec → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) )
12 5 11 syl ( 𝜑 → ( 𝑄𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) )
13 7 12 mpbid ( 𝜑 → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) )
14 13 adantr ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) )
15 5 adantr ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) → 𝑊 ∈ LVec )
16 15 3ad2ant1 ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑊 ∈ LVec )
17 6 adantr ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) → 𝑈𝑆 )
18 17 3ad2ant1 ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈𝑆 )
19 eldifi ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
20 19 3ad2ant2 ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
21 simp1r ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ¬ 𝑄𝑈 )
22 simp3 ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) )
23 22 sseq1d ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ( 𝑄𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) )
24 21 23 mtbid ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 )
25 8 1 9 2 4 16 18 20 24 lsmcv2 ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈 𝐶 ( 𝑈 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) )
26 22 oveq2d ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ( 𝑈 𝑄 ) = ( 𝑈 ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) )
27 25 26 breqtrrd ( ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈 𝐶 ( 𝑈 𝑄 ) )
28 27 rexlimdv3a ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) → ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → 𝑈 𝐶 ( 𝑈 𝑄 ) ) )
29 14 28 mpd ( ( 𝜑 ∧ ¬ 𝑄𝑈 ) → 𝑈 𝐶 ( 𝑈 𝑄 ) )
30 5 adantr ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → 𝑊 ∈ LVec )
31 6 adantr ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → 𝑈𝑆 )
32 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
33 5 32 syl ( 𝜑𝑊 ∈ LMod )
34 1 3 33 7 lsatlssel ( 𝜑𝑄𝑆 )
35 1 2 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑄𝑆 ) → ( 𝑈 𝑄 ) ∈ 𝑆 )
36 33 6 34 35 syl3anc ( 𝜑 → ( 𝑈 𝑄 ) ∈ 𝑆 )
37 36 adantr ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → ( 𝑈 𝑄 ) ∈ 𝑆 )
38 simpr ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → 𝑈 𝐶 ( 𝑈 𝑄 ) )
39 1 4 30 31 37 38 lcvpss ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → 𝑈 ⊊ ( 𝑈 𝑄 ) )
40 1 lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
41 33 40 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )
42 41 6 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
43 41 34 sseldd ( 𝜑𝑄 ∈ ( SubGrp ‘ 𝑊 ) )
44 2 42 43 lssnle ( 𝜑 → ( ¬ 𝑄𝑈𝑈 ⊊ ( 𝑈 𝑄 ) ) )
45 44 adantr ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → ( ¬ 𝑄𝑈𝑈 ⊊ ( 𝑈 𝑄 ) ) )
46 39 45 mpbird ( ( 𝜑𝑈 𝐶 ( 𝑈 𝑄 ) ) → ¬ 𝑄𝑈 )
47 29 46 impbida ( 𝜑 → ( ¬ 𝑄𝑈𝑈 𝐶 ( 𝑈 𝑄 ) ) )