Step |
Hyp |
Ref |
Expression |
1 |
|
lcv1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lcv1.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lcv1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lcv1.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
5 |
|
lcv1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lcv1.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
lcv1.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
11 |
8 9 10 3
|
islsat |
⊢ ( 𝑊 ∈ LVec → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
13 |
7 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑊 ∈ LVec ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑊 ∈ LVec ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈 ∈ 𝑆 ) |
19 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
21 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ¬ 𝑄 ⊆ 𝑈 ) |
22 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) |
23 |
22
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ( 𝑄 ⊆ 𝑈 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) ) |
24 |
21 23
|
mtbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ¬ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ⊆ 𝑈 ) |
25 |
8 1 9 2 4 16 18 20 24
|
lsmcv2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈 𝐶 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
26 |
22
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → ( 𝑈 ⊕ 𝑄 ) = ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) ) |
27 |
25 26
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) → 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) |
28 |
27
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → ( ∃ 𝑥 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) → 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |
29 |
14 28
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝑄 ⊆ 𝑈 ) → 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) |
30 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → 𝑊 ∈ LVec ) |
31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → 𝑈 ∈ 𝑆 ) |
32 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
33 |
5 32
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
34 |
1 3 33 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
35 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆 ) → ( 𝑈 ⊕ 𝑄 ) ∈ 𝑆 ) |
36 |
33 6 34 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ 𝑄 ) ∈ 𝑆 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → ( 𝑈 ⊕ 𝑄 ) ∈ 𝑆 ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) |
39 |
1 4 30 31 37 38
|
lcvpss |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → 𝑈 ⊊ ( 𝑈 ⊕ 𝑄 ) ) |
40 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
41 |
33 40
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
42 |
41 6
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
43 |
41 34
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
44 |
2 42 43
|
lssnle |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ ( 𝑈 ⊕ 𝑄 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ ( 𝑈 ⊕ 𝑄 ) ) ) |
46 |
39 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) → ¬ 𝑄 ⊆ 𝑈 ) |
47 |
29 46
|
impbida |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |