| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcv2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lcv2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
lcv2.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 4 |
|
lcv2.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
| 5 |
|
lcv2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lcv2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lcv2.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
11 6
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
1 3 9 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 14 |
11 13
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
2 12 14
|
lssnle |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ⊊ ( 𝑈 ⊕ 𝑄 ) ) ) |
| 16 |
1 2 3 4 5 6 7
|
lcv1 |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |
| 17 |
15 16
|
bitr3d |
⊢ ( 𝜑 → ( 𝑈 ⊊ ( 𝑈 ⊕ 𝑄 ) ↔ 𝑈 𝐶 ( 𝑈 ⊕ 𝑄 ) ) ) |