Metamath Proof Explorer


Theorem chcv2

Description: The Hilbert lattice has the covering property. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chcv2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐴 ⊊ ( 𝐴 𝐵 ) ↔ 𝐴 ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 atelch ( 𝐵 ∈ HAtoms → 𝐵C )
2 chnle ( ( 𝐴C𝐵C ) → ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) ) )
3 1 2 sylan2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) ) )
4 chcv1 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴𝐴 ( 𝐴 𝐵 ) ) )
5 3 4 bitr3d ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐴 ⊊ ( 𝐴 𝐵 ) ↔ 𝐴 ( 𝐴 𝐵 ) ) )